Skip to main content

High-Throughput Sequencing to Detect DNA-RNA Changes

  • Protocol
  • First Online:
RNA Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2181))

Abstract

The advent of deep sequencing technologies has greatly improved the study of complex eukaryotic genomes and transcriptomes, allowing the investigation of posttranscriptional molecular mechanisms as alternative splicing and RNA editing at unprecedented throughput and resolution. The most prevalent type of RNA editing in higher eukaryotes is the deamination of adenosine to inosine (A-to-I) in double-stranded RNAs. Depending on the RNA type or the RNA region involved, A-to-I RNA editing contributes to the transcriptome and proteome diversity.

Hereafter, we present an easy and reproducible computational protocol for the identification of candidate RNA editing sites in humans using deep transcriptome (RNA-Seq) and genome (DNA-Seq) sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46(6):819–826

    Article  CAS  PubMed  Google Scholar 

  2. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349. https://doi.org/10.1146/annurev-biochem-060208-105251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maas S, Kawahara Y, Tamburro KM, Nishikura K (2006) A-to-I RNA editing and human disease. RNA Biol 3(1):1–9. https://doi.org/10.4161/rna.3.1.2495

    Article  CAS  PubMed  Google Scholar 

  4. Kung CP, Maggi LB Jr, Weber JD (2018) The role of RNA editing in cancer development and metabolic disorders. Front Endocrinol 9:762. https://doi.org/10.3389/fendo.2018.00762

    Article  Google Scholar 

  5. Picardi E, Manzari C, Mastropasqua F, Aiello I, D’Erchia AM, Pesole G (2015) Profiling RNA editing in human tissues: towards the inosinome Atlas. Sci Rep 5:14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB (2012) Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods 9(6):579–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diroma MA, Ciaccia L, Pesole G, Picardi E (2019) Elucidating the editome: bioinformatics approaches for RNA editing detection. Brief Bioinform 20(2):436–447. https://doi.org/10.1093/bib/bbx129

    Article  CAS  PubMed  Google Scholar 

  8. Picardi E, Pesole G (2013) REDItools: high-throughput RNA editing detection made easy. Bioinformatics 29(14):1813–1814

    Article  CAS  PubMed  Google Scholar 

  9. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26(7):873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramaswami G, Li JB (2014) RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 42(Database issue):D109–D113

    Article  CAS  PubMed  Google Scholar 

  14. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang L, Wang S, Li W (2012) RSeQC: quality control of RNAseq experiments. Bioinformatics (Oxford, England) 28(16):2184–2185. https://doi.org/10.1093/bioinformatics/bts356

    Article  CAS  Google Scholar 

  18. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664. https://doi.org/10.1101/gr.229202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang M, Kong L (2019) pblat: a multithread blat algorithm speeding up aligning sequences to genomes. BMC Bioinform 20(1):28. https://doi.org/10.1186/s12859-019-2597-8

    Article  Google Scholar 

  20. Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR (2017) Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods 14(2):135–139

    Article  CAS  PubMed  Google Scholar 

  21. Hatem A, Bozdag D, Toland AE, Catalyurek UV (2013) Benchmarking short sequence mapping tools. BMC Bioinformatics 14:184

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We kindly thank Elixir-IIB (the Italian Infrastructure for Bioinformatics), the EPITRAN project (the European Epitranscriptomics Network), and the Bari ReCaS DataCenter. This work was supported by PRACE project no. 2018194670 to E.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Picardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lo Giudice, C., Pesole, G., Picardi, E. (2021). High-Throughput Sequencing to Detect DNA-RNA Changes. In: Picardi, E., Pesole, G. (eds) RNA Editing. Methods in Molecular Biology, vol 2181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0787-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0787-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0786-2

  • Online ISBN: 978-1-0716-0787-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics