Skip to main content

Cryopreservation of Seeds and Seed Embryos in Orthodox-, Intermediate-, and Recalcitrant-Seeded Species

  • Protocol
  • First Online:
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2180))

Abstract

Seeds are one of the preferable and most used sources of germplasm for the ex situ preservation of plant genetic resources. They are generally stored dry at −20 °C in seed banks following international standards. However, some seeds do not tolerate drying and/or storage at −20 °C, or present short lifespans at these conditions. For them cryopreservation is indicated for long-term preservation. When seeds tolerate desiccation (i.e., orthodox seeds), they can be dried at about 32 ± 3% relative humidity at 18 °C and stored in the vapor phase of liquid nitrogen. This is the method followed in the Millennium Seed Bank of the Royal Botanic Gardens, Kew, for wild species with short lifespans in the standard conditions of seed banks. When seeds do not tolerate desiccation (i.e., recalcitrant seeds) or their tolerance to desiccation and/or −20 °C storage is limited (i.e., intermediate seeds), drying and cooling procedures must be adjusted, and often, cryoprotection is also required. Some methods are detailed for diverse species of temperate and tropical origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li DZ, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14:614–621

    Article  CAS  PubMed  Google Scholar 

  2. Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  3. Walters C (2015) Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta 242:397–406

    Article  CAS  PubMed  Google Scholar 

  4. Walters C, Berjak P, Pammenter N, Kennedy K, Raven P (2013) Preservation of recalcitrant seeds. Science 339:915–916

    Article  CAS  PubMed  Google Scholar 

  5. Wesley-Smith J, Berjak P, Pammenter NW, Walters C (2014) Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures. Ann Bot 113:695–709

    Article  PubMed  Google Scholar 

  6. FAO (2014) Genebank standards for plant genetic resources for food and agriculture, Rev. FAO, Rome

    Google Scholar 

  7. Center for Plant Conservation (2019) CPC Best plant conservation practices to support species survival in the wild. Center for Plant Conservation, Escondido, CA

    Google Scholar 

  8. Millennium Seed Bank (MSB) Partnership (2015) Seed conservation standards for MSB partnership collections. Royal Botanic Gardens, Kew, UK

    Google Scholar 

  9. Wyse SV, Dickie JB (2017) Predicting the global incidence of seed desiccation sensitivity. J Ecol 105:1082–1093

    Article  Google Scholar 

  10. Walters C, Wheeler LM, Grotenhuis JM (2005) Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15:1–20

    Article  CAS  Google Scholar 

  11. Ballesteros D, Pence VC (2017) Survival and death of seeds during LN storage: a case study on seeds with short lifespans. CryoLetters 38:278–289

    PubMed  Google Scholar 

  12. Davies RM, Dickie JB, Ballesteros D (2018) Evaluation of short-lived seeds’ cryopreservation as alternative to conventional seed banking. Cryobiology 85:140–141

    Article  Google Scholar 

  13. Vertucci CW, Roos EE, Crane J (1994) Theoretical basis of protocols for seed storage III. Optimum moisture contents for pea seeds stored at different temperatures. Ann Bot 74:531–540

    Article  Google Scholar 

  14. Dussert S, Chabrillange N, Rocquelin G, Engelmann F, Lopez M, Hammon S (2001) Tolerance of coffee (Coffea spp.) seeds to ultra-low temperature exposure in relation to calorimetric properties of tissue water, lipid composition, and cooling procedure. Physiol Plant 112:495–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hor YL, Kim YJ, Ugap A, Chabrillange N, Sinniah UR, Engelmann F, Dussert S (2005) Optimal hydration status for cryopreservation of intermediate oily seeds: Citrus as a case study. Ann Bot 95:1153–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berjak P, Pammenter NW (2007) From Avicennia to Zizania: seed recalcitrance in perspective. Ann Bot 101:213–228

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vertucci CW, Leopold CA (1987) The relationship between water binding and desiccation tolerance in tissues. Plant Physiol 85:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vertucci CW (1990) Calorimetric studies of the state of water in seed tissues. Biophys J 58:1463–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wolfe J, Bryant G, Koster KL (2002) What is ‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters 23:157–166

    PubMed  Google Scholar 

  20. Pritchard HW (1995) Cryopreservation of seeds. In: Day JG, Pennington MW (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 133–144

    Chapter  Google Scholar 

  21. Nadarajan J, Mansor M, Krishnapillay B, Staines HJ, Benson EE, Harding K (2008) Applications of differential scanning calorimetry in developing cryopreservation strategies for Parkia speciosa, a tropical tree producing recalcitrant seeds. CryoLetters 29:95–110

    CAS  PubMed  Google Scholar 

  22. Eira MTS, Amaral da Silva AE, De Castro RD, Dussert S, Walters C, Bewley JD, Hilhorst HWM (2006) Coffee seed physiology. Braz J Plant Physiol 18:149–163

    Article  CAS  Google Scholar 

  23. Pammenter NW, Vertucci CW, Berjak P (1991) Homeohydrous (recalcitrant) seeds: dehydration, the state of water and viability characteristics in Landolphia kirkii. Plant Physiol 96:1093–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mycock D (1999) Addition of calcium and magnesium to a glycerol and sucrose cryoprotectant solution improves the quality of plant embryo recovery from cryostorage. CryoLetters 20:77–82

    CAS  Google Scholar 

  25. McCown BH, Lloyd G (1981) Woody Plant Medium (WPM) - a mineral nutrient formulation for microculture of woody plant species. Hort Sci 16:453–453

    Google Scholar 

  26. Xia K, Hill LM, Li DZ, Walters C (2014) Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. Ann Bot 114:1747–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gold K, Manger K (2014) Technical Information Sheet_05: Measuring seed moisture status using a hygrometer. Board of Trustees of the Royal Botanic Gardens, Kew. http://brahmsonline.kew.org/Content/Projects/msbp/resources/Training/05-eRH-moisture-measurement.pdf. Accessed 31 July 2019

    Google Scholar 

  28. Sutcliffe V, Adams J (2014) Technical Information Sheet_07: Low-cost monitors of seed moisture status. Board of Trustees of the Royal Botanic Gardens, Kew. http://brahmsonline.kew.org/Content/Projects/msbp/resources/Training/07-Low-cost-moisture-monitors.pdf. Accessed 31 July 2019

    Google Scholar 

  29. Probert R, Manger K, Adams J (2003) Non-destructive measurement of seed moisture. In: Smith RD, Dickie JB, Linington SH, Pritchard HW, Probert RJ (eds) Seed conservation: turning science into practice. The Royal Botanic Gardens, Kew, London, pp 367–387

    Google Scholar 

  30. Vertucci CW, Roos EE (1993) Theoretical basis of protocols for seed storage II. The influence of temperature on optimal moisture levels. Seed Sci Res 3:201–213

    Article  Google Scholar 

  31. Gold K, Hay F (2014) Technical Information Sheet_09: Equilibrating seeds to specific moisture levels. Board of Trustees of the Royal Botanic Gardens, Kew. http://brahmsonline.kew.org/Content/Projects/msbp/resources/Training/09-Seed-air-moisture-relations.pdf. Accessed 28 July 2019

    Google Scholar 

  32. Sun WQ (2002) Methods for the study of water relations under desiccation stress. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI, Wallingford, UK, pp 47–91

    Chapter  Google Scholar 

  33. Fanega-Sleziak N, Pritchard HW, Ballesteros D (2018) Contribution of embryo size and age to the successful cryopreservation of Aesculus species. Cryobiology 85:140

    Article  Google Scholar 

  34. Bonner FT, Karrfalt RP (2008) The woody plant seed manual. Agr Handbk 727, USDA-FS

    Google Scholar 

  35. Gonzalez-Benito ME, Prieto RM, Herradón E, Martín C (2002) Cryopreservation of Quercus suber and Quercus ilex embryonic axes: in vitro culture, desiccation and cooling factors. CryoLetters 23:283–290

    PubMed  Google Scholar 

  36. Berjak P, Varghese B, Pammenter NW (2011) Cathodic amelioration of the adverse effects of oxidative stress accompanying procedures necessary for cryopreservation of embryonic axes of recalcitrant-seeded species. Seed Sci Res 21:187–203

    Article  CAS  Google Scholar 

  37. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  38. Wesley-Smith J, Walters C, Pammenter NW, Berjak P (2001) Interactions among water content, rapid (nonequilibrium) cooling to −196°C, and survival of embryonic axes of Aesculus hippocastanum L. seeds. Cryobiology 42:196–206

    Article  CAS  PubMed  Google Scholar 

  39. Gonzalez-Benito ME, Perez-Ruiz C (1992) Cryopreservation of Quercus faginea embryonic axes. Cryobiology 29:685–690

    Article  Google Scholar 

  40. Campbell LD, Astrin JJ, DeSouza Y, Giri J, Patel AA, Rawley-Payne M, Rush A, Sieffert N (2018) The 2018 Revision of the ISBER Best Practices: Summary of changes and the editorial team’s development process. Biopreserv Biobank 16:3–6

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kalemba EM, Janowiak F, Pukacka S (2009) Desiccation tolerance acquisition in developing beech (Fagus sylvatica L.) seeds: the contribution of dehydrin-like protein. Trees 23(2):305–315

    Article  CAS  Google Scholar 

  42. Crane J, Miller AL, Van Roekel JW, Walters C (2003) Triacylglycerols determine the unusual storage physiology of Cuphea seed. Planta 217:699–708

    Article  CAS  PubMed  Google Scholar 

  43. Corredoira E, San-José MC, Ballester A, Vieitez AM (2004) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters 25:33–42

    PubMed  Google Scholar 

  44. Sershen BP, Pammenter NW, Wesley-Smith J (2012) The effects of various parameters during processing for cryopreservation on the ultrastructure and viability of recalcitrant zygotic embryos of Amaryllis belladonna. Protoplasma 249:155–169

    Article  CAS  PubMed  Google Scholar 

  45. Nadarajan J, Pritchard HW (2014) Biophysical characteristics of successful oilseed embryo cryoprotection and cryopreservation using vacuum infiltration vitrification: an innovation in plant cell preservation. PLoS One 9:e96169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank diverse researchers and technicians from RBG Kew and the MSB that have supported and revised the development of these protocols, particularly John Adams for helping to build the “flash drier” used at RBG Kew and Frances Stanley and Kirstine Manger for making a critical review of the manuscript. RBG Kew receives grant-in-aid from Defra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ballesteros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ballesteros, D., Fanega-Sleziak, N., Davies, R.M. (2021). Cryopreservation of Seeds and Seed Embryos in Orthodox-, Intermediate-, and Recalcitrant-Seeded Species. In: Wolkers, W.F., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 2180. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0783-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0783-1_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0782-4

  • Online ISBN: 978-1-0716-0783-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics