Skip to main content

Protein Structure Analysis and Validation with X-Ray Crystallography

  • Protocol
  • First Online:
Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2178))

Abstract

X-ray crystallography is the main technique for the determination of protein structures. About 85% of all protein structures known to date have been elucidated using X-ray crystallography. Knowledge of the three-dimensional structure of proteins can be used in various applications in biotechnology, biomedicine, drug design , and basic research and as a validation tool for protein modifications and ligand binding. Moreover, the requirement for pure, homogeneous, and stable protein solutions in crystallizations makes X-ray crystallography beneficial in other fields of protein research as well. Here, we describe the technique of X-ray protein crystallography and the steps involved for a successful three-dimensional crystal structure determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Derewenda ZS (2010) Application of protein engineering to enhance crystallizability and improve crystal properties. Acta Crystallogr D Biol Crystallogr 66:604–615. https://doi.org/10.1107/S090744491000644X

    Article  CAS  Google Scholar 

  2. Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18. https://doi.org/10.1107/S2053230X14026843

    Article  CAS  Google Scholar 

  3. Suzuki N, Hiraki M, Yamada Y et al (2010) Crystallization of small proteins assisted by green fluorescent protein. Acta Crystallogr D Biol Crystallogr 66:1059–1066. https://doi.org/10.1107/S0907444910032944

    Article  CAS  Google Scholar 

  4. Incardona M-F, Bourenkov GP, Levik K et al (2009) EDNA: a framework for plugin-based applications applied to X-ray experiment online data analysis. J Synchrotron Radiat 16:872–879. https://doi.org/10.1107/S0909049509036681

    Article  Google Scholar 

  5. Svensson O, Malbet-Monaco S, Popov A et al (2015) Fully automatic characterization and data collection from crystals of biological macromolecules. Acta Crystallogr D Biol Crystallogr 71:1757–1767. https://doi.org/10.1107/S1399004715011918

    Article  CAS  Google Scholar 

  6. De la Mora E, Carmichael I, Garman E (2011) Effective scavenging at cryotemperatures: further increasing the dose tolerance of protein crystals. J Synchrotron Radiat 18:346–357

    Article  CAS  Google Scholar 

  7. Kmetko J, Warkentin M, Englich U, Thorne RE (2011) Can radiation damage to protein crystals be reduced using small-molecule compounds? Acta Crystallogr D Biol Crystallogr 67:881–893. https://doi.org/10.1107/S0907444911032835

    Article  CAS  Google Scholar 

  8. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    Article  CAS  Google Scholar 

  9. Evans P, McCoy A (2008) An introduction to molecular replacement. Acta Crystallogr D Biol Crystallogr 64:1–10. https://doi.org/10.1107/S0907444907051554

    Article  CAS  Google Scholar 

  10. Joachimiak A (2009) High-throughput crystallography for structural genomics. Curr Opin Struct Biol 19:573–584. https://doi.org/10.1016/j.sbi.2009.08.002

    Article  CAS  Google Scholar 

  11. Brünger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475

    Article  Google Scholar 

  12. Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21. https://doi.org/10.1111/j.1742-4658.2007.06178.x

    Article  CAS  Google Scholar 

  13. Branden CI, Jones TA (1990) Between objectivity and subjectivity. Nature 343:687–689. https://doi.org/10.1038/343687a0

    Article  Google Scholar 

  14. Read RJ, Adams PD, Arendall WB et al (2011) A new generation of crystallographic validation tools for the protein data Bank. Structure 19:1395–1412. https://doi.org/10.1016/j.str.2011.08.006

    Article  CAS  Google Scholar 

  15. Urzhumtseva L, Afonine PV, Adams PD, Urzhumtsev A (2009) Crystallographic model quality at a glance. Acta Crystallogr D Biol Crystallogr 65:297–300. https://doi.org/10.1107/S0907444908044296

    Article  CAS  Google Scholar 

  16. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132. https://doi.org/10.1107/S0907444909047337

    Article  CAS  Google Scholar 

  17. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242. https://doi.org/10.1107/S0907444910045749

    Article  CAS  Google Scholar 

  18. Potterton E, Briggs P, Turkenburg M, Dodson E (2003) A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59:1131–1137. https://doi.org/10.1107/S0907444903008126

    Article  Google Scholar 

  19. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674. https://doi.org/10.1107/S0021889807021206

    Article  CAS  Google Scholar 

  20. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  CAS  Google Scholar 

  21. Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221. https://doi.org/10.1107/S0907444909052925

    Article  CAS  Google Scholar 

  22. Bourenkov GP, Popov AN (2010) Optimization of data collection taking radiation damage into account. Acta Crystallogr D Biol Crystallogr 66:409–419. https://doi.org/10.1107/S0907444909054961

    Article  CAS  Google Scholar 

  23. French S, Wilson K (1978) On the treatment of negative intensity observations. Acta Cryst A 34:517–525. https://doi.org/10.1107/S0567739478001114

    Article  Google Scholar 

  24. Bunkoczi G, Read RJ (2011) Improvement of molecular-replacement models with Sculptor. Acta Crystallogr D Biol Crystallogr 67:303–312. https://doi.org/10.1107/S0907444910051218

    Article  CAS  Google Scholar 

  25. Morris R, Perrakis A, Lamzin V (2003) ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol 374:229–244. https://doi.org/10.1016/S0076-6879(03)74011-7

    Article  CAS  Google Scholar 

  26. Cowtan K (2006) The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002–1011. https://doi.org/10.1107/S0907444906022116

    Article  CAS  Google Scholar 

  27. Dupeux F, Rower M, Seroul G et al (2011) A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Crystallogr D Biol Crystallogr 67:915–919

    Article  CAS  Google Scholar 

  28. Wernimont A, Edwards A (2009) In situ proteolysis to generate crystals for structure determination: an update. PLoS One 4:e5094. https://doi.org/10.1371/journal.pone.0005094

    Article  CAS  Google Scholar 

  29. Dodson E (2003) Is it jolly SAD? Acta Crystallogr D Biol Crystallogr 59:1958–1965

    Article  Google Scholar 

  30. Hargreaves D (2012) A manual low-cost protein-crystallization plate jig for in situ diffraction in the home laboratory. J Appl Crystallogr 45:138–140. https://doi.org/10.1107/S0021889811052654

    Article  CAS  Google Scholar 

  31. Privalov PL (2009) Microcalorimetry of proteins and their complexes. Methods Mol Biol 490:1–39. https://doi.org/10.1007/978-1-59745-367-7_1

    Article  CAS  Google Scholar 

  32. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139. https://doi.org/10.1016/j.bbapap.2005.06.005

    Article  CAS  Google Scholar 

  33. Morgner N, Robinson CV (2012) Linking structural change with functional regulation-insights from mass spectrometry. Curr Opin Struct Biol 22:44–51. https://doi.org/10.1016/j.sbi.2011.12.003

    Article  CAS  Google Scholar 

  34. Ye H (2006) Simultaneous determination of protein aggregation, degradation, and absolute molecular weight by size exclusion chromatography-multiangle laser light scattering. Anal Biochem 356:76–85. https://doi.org/10.1016/j.ab.2006.05.025

    Article  CAS  Google Scholar 

  35. Howlett GJ, Minton AP, Rivas G (2006) Analytical ultracentrifugation for the study of protein association and assembly. Curr Opin Chem Biol 10:430–436. https://doi.org/10.1016/j.cbpa.2006.08.017

    Article  CAS  Google Scholar 

  36. Gheyi T, Rodgers L, Romero R et al (2010) Mass spectrometry guided in situ proteolysis to obtain crystals for X-ray structure determination. J Am Soc Mass Spectrom 21:1795–1801. https://doi.org/10.1016/j.jasms.2010.06.015

    Article  CAS  Google Scholar 

  37. Papish AL, Tari LW, Vogel HJ (2002) Dynamic light scattering study of calmodulin-target peptide complexes. Biophys J 83:1455–1464. https://doi.org/10.1016/S0006-3495(02)73916-7

    Article  CAS  Google Scholar 

  38. Casanas A, Warshamanage R, Finke AD et al (2016) EIGER detector: application in macromolecular crystallography. Acta Crystallogr D Struct Biol 72:1036–1048. https://doi.org/10.1107/S2059798316012304

    Article  CAS  Google Scholar 

  39. Weiss MS (2001) Global indicators of X-ray data quality. J Appl Crystallogr 34:130–135. https://doi.org/10.1107/S0021889800018227

    Article  CAS  Google Scholar 

  40. Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336:1030–1033. https://doi.org/10.1126/science.1218231

    Article  CAS  Google Scholar 

  41. Parsons S (2003) Introduction to twinning. Acta Crystallogr D Biol Crystallogr 59:1995–2003

    Article  Google Scholar 

  42. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  CAS  Google Scholar 

  43. Keegan RM, Winn MD (2008) MrBUMP: an automated pipeline for molecular replacement. Acta Crystallogr D Biol Crystallogr 64:119–124. https://doi.org/10.1107/S0907444907037195

    Article  CAS  Google Scholar 

  44. Rupp B (2009) Biomolecular crystallography: principles, practice, and application to structural biology. Garland Science, New York

    Book  Google Scholar 

  45. Winter G (2010) xia2: an expert system for macromolecular crystallography data reduction. J Appl Crystallogr 43:186–190. https://doi.org/10.1107/S0021889809045701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastassios C. Papageorgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Papageorgiou, A.C., Poudel, N., Mattsson, J. (2021). Protein Structure Analysis and Validation with X-Ray Crystallography. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics