Skip to main content

Locus-Specific Chromatin Proteome Revealed by Mass Spectrometry-Based CasID

  • Protocol
  • First Online:
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2175))

Abstract

Biotin proximity labeling has largely extended the toolbox of mass spectrometry-based interactomics. To date, BirA, engineered BirA variants, or other biotinylating enzymes have been widely applied to characterize protein interactions. By implementing chromatin purification-based methods the genome-wide interactome of proteins can be defined. However, acquiring a high-resolution interactome of a single genomic locus preferably by multiplexed measurements of several distinct genomic loci in parallel remains challenging. We recently developed CasID, a novel approach where the catalytically inactive Cas9 (dCas9) is coupled to the promiscuous biotin ligase BirA (BirA∗). With CasID, first the local proteome at repetitive telomeric, major satellite, and minor satellite regions was determined. With more efficient biotin ligases and sensitive mass spectrometry, others have successfully identified the chromatin composition at even smaller genomic, non-repetitive regions of a few hundred base pairs in length. Here, we summarize the most recent developments towards interactomics at a single genomic locus and provide a step-by-step protocol based on the CasID approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wierer M, Mann M (2016) Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes. Hum Mol Genet 25:R106–R114. https://doi.org/10.1093/hmg/ddw208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kustatscher G, KLH W, Furlan C, Rappsilber J (2014) Chromatin enrichment for proteomics. Nat Protoc 9:2090–2099. https://doi.org/10.1038/nprot.2014.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ginno PA, Burger L, Seebacher J et al (2018) Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape. Nat Commun 9:4048. https://doi.org/10.1038/s41467-018-06007-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Federation AJ, Nandakumar V, Wang H et al (2018) Quantification of nuclear protein dynamics reveals chromatin remodeling during acute protein degradation.bioRxiv 345686. https://doi.org/10.1101/345686.

  5. Déjardin J, Kingston RE (2009) Purification of proteins associated with specific genomic Loci. Cell 136:175–186. https://doi.org/10.1016/j.cell.2008.11.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fujita T, Asano Y, Ohtsuka J et al (2013) Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP). Sci Rep 3:3171. https://doi.org/10.1038/srep03171

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schmidtmann E, Anton T, Rombaut P et al (2016) Determination of local chromatin composition by CasID. Nucleus 7:476–484. https://doi.org/10.1080/19491034.2016.1239000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim DI, Jensen SC, Noble KA et al (2016) An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell 27:1188–1196. https://doi.org/10.1091/mbc.E15-12-0844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810. https://doi.org/10.1083/jcb.201112098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Papageorgiou DN, Demmers J, Strouboulis J (2013) NP-40 reduces contamination by endogenous biotinylated carboxylases during purification of biotin tagged nuclear proteins. Protein Expr Purif 89:80–83. https://doi.org/10.1016/j.pep.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  11. Lobingier BT, Hüttenhain R, Eichel K et al (2017) An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169:350–360.e12. https://doi.org/10.1016/j.cell.2017.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trinkle-Mulcahy L (2019) Recent advances in proximity-based labeling methods for interactome mapping. F1000Res 8. https://doi.org/10.12688/f1000research.16903.1

  13. Lambert J-P, Tucholska M, Go C et al (2015) Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics 118:81–94. https://doi.org/10.1016/j.jprot.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  14. Lam SS, Martell JD, Kamer KJ et al (2015) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12:51–54. https://doi.org/10.1038/nmeth.3179

    Article  CAS  PubMed  Google Scholar 

  15. Branon TC, Bosch JA, Sanchez AD et al (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36:880–887. https://doi.org/10.1038/nbt.4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao XD, Tu L-C, Mir A et al (2018) C-BERST: defining subnuclear proteomic landscapes at genomic elements with dCas9-APEX2. Nat Methods 15:433–436. https://doi.org/10.1038/s41592-018-0006-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Myers SA, Wright J, Peckner R et al (2018) Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. Nat Methods 15:437–439. https://doi.org/10.1038/s41592-018-0007-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiu W, Xu Z, Zhang M et al (2019) Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system. Nucleic Acids Res 47:e52. https://doi.org/10.1093/nar/gkz134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anton T, Bultmann S, Leonhardt H, Markaki Y (2014) Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5:163–172. https://doi.org/10.4161/nucl.28488

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li X, Burnight ER, Cooney AL et al (2013) piggyBac transposase tools for genome engineering. Proc Natl Acad Sci U S A 110:E2279–E2287. https://doi.org/10.1073/pnas.1305987110

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kowarz E, Löscher D, Marschalek R (2015) Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol J 10:647–653. https://doi.org/10.1002/biot.201400821

    Article  CAS  PubMed  Google Scholar 

  22. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906. https://doi.org/10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  23. Scheltema RA, Mann M (2012) SprayQc: a real-time LC–MS/MS quality monitoring system to maximize uptime using off the shelf components. J Proteome Res 11:3458–3466. https://doi.org/10.1021/pr201219e

    Article  CAS  PubMed  Google Scholar 

  24. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367

    Article  CAS  Google Scholar 

  25. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805. https://doi.org/10.1021/pr101065j

    Article  CAS  PubMed  Google Scholar 

  26. Cox J, Hein MY, Luber CA et al (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. https://doi.org/10.1074/mcp.M113.031591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731

    Article  CAS  Google Scholar 

Download references

Acknowledgments

EU and MDB are fellows of the International Max Planck Research School for Molecular Life Sciences (IMPRS-LS). EU is supported by the research training group 1721 (RTG 1721), a graduate school of the Deutsche Forschungsgemeinschaft (DFG). The work on chromatin composition is supported by the DFG (SFB 1064/A17 to HL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Leonhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ugur, E., Bartoschek, M.D., Leonhardt, H. (2020). Locus-Specific Chromatin Proteome Revealed by Mass Spectrometry-Based CasID. In: Hancock, R. (eds) The Nucleus . Methods in Molecular Biology, vol 2175. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0763-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0763-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0762-6

  • Online ISBN: 978-1-0716-0763-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics