Skip to main content

Virus-Induced Gene Silencing in Olive Tree (Oleaceae)

  • Protocol
  • First Online:
Virus-Induced Gene Silencing in Plants

Abstract

Research on gene functions in non-model tree species is hampered by a number of difficulties such as time-consuming genetic transformation protocols and extended period for the production of healthy transformed offspring, among others. Virus-induced gene silencing (VIGS) is an alternative approach to transiently knock out an endogenous gene of interest (GOI) by the introduction of viral sequences encompassing a fragment of the GOI and to exploit the posttranscriptional gene silencing (PTGS) mechanism of the plant, thus triggering silencing of the GOI. Here we describe the successful application of Tobacco rattle virus (TRV)-mediated VIGS through agroinoculation of olive plantlets. This methodology is expected to serve as a fast tracking and powerful tool enabling researchers from diversified fields to perform functional genomic analyses in the olive tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cruz F, Julca I, Gómez-Garrido J, Loska D, Marcet-Houben M, Cano E, Galán B, Frias L, Ribeca P, Derdak S, Gut M, Sánchez-Fernández M, García JL, Gut IG, Vargas P, Alioto TS, Gabaldón T (2016) Genome sequence of the olive tree, Olea europaea. GigaScience 5(1):1–12. https://doi.org/10.1186/s13742-016-0134-5

    Article  CAS  Google Scholar 

  2. Unver T, Wu Z, Sterck L, Turktas M, Lohaus R, Li Z, Yang M, He L, Deng T, Escalante FJ, Llorens C, Roig FJ, Parmaksiz I, Dundar E, Xie F, Zhang B, Ipek A, Uranbey S, Erayman M, Ilhan E, Badad O, Ghazal H, Lightfoot DA, Kasarla P, Colantonio V, Tombuloglu H, Hernandez P, Mete N, Cetin O, Van Montagu M, Yang H, Gao Q, Dorado G, Van de Peer Y (2017) Genome of wild olive and the evolution of oil biosynthesis. Proc Natl Acad Sci U S A 114(44):E9413–E9422. https://doi.org/10.1073/pnas.1708621114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Green PS (2004) Oleaceae. In: Kadereit JW (ed) Flowering Plants · Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 296–306. https://doi.org/10.1007/978-3-642-18617-2_16

    Chapter  Google Scholar 

  4. Fernández-Ocaña A, Carmen García-López M, Jiménez-Ruiz J, Saniger L, Macías D, Navarro F, Oya R, Belaj A, de la Rosa R, Corpas FJ, Bautista Barroso J, Luque F (2010) Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genet Genomes 6(6):891–903. https://doi.org/10.1007/s11295-010-0299-5

    Article  Google Scholar 

  5. Yanik H, Turktas M, Dundar E, Hernandez P, Dorado G, Unver T (2013) Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC Plant Biol 13(1):10. https://doi.org/10.1186/1471-2229-13-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koudounas K, Banilas G, Michaelidis C, Demoliou C, Rigas S, Hatzopoulos P (2015) A defence-related Olea europaea β-glucosidase hydrolyses and activates oleuropein into a potent protein cross-linking agent. J Exp Bot 66(7):2093–2106. https://doi.org/10.1093/jxb/erv002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koudounas K, Thomopoulou M, Michaelidis C, Zevgiti E, Papakostas G, Tserou P, Daras G, Hatzopoulos P (2017) The C-domain of oleuropein β-glucosidase assists in protein folding and sequesters the enzyme in nucleus. Plant Physiol 174(3):1371–1383. https://doi.org/10.1104/pp.17.00512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alagna F, Geu-Flores F, Kries H, Panara F, Baldoni L, O’Connor SE, Osbourn A (2016) Identification and characterization of the iridoid synthase involved in oleuropein biosynthesis in olive (Olea europaea) fruits. J Biol Chem 291(11):5542–5554. https://doi.org/10.1074/jbc.M115.701276

    Article  CAS  PubMed  Google Scholar 

  9. Volk J, Sarafeddinov A, Unver T, Marx S, Tretzel J, Zotzel J, Warzecha H (2019) Two novel methylesterases from Olea europaea contribute to the catabolism of oleoside-type secoiridoid esters. Planta 250(6):2083–2097. https://doi.org/10.1007/s00425-019-03286-0

    Article  CAS  PubMed  Google Scholar 

  10. Banilas G, Hatzopoulos P (2013) Genetics and molecular biology of olives. In: Aparicio R, Harwood J (eds) Handbook of olive oil: analysis and properties. Springer US, Boston, MA, pp 129–161. https://doi.org/10.1007/978-1-4614-7777-8_5

    Chapter  Google Scholar 

  11. Corrado G, Garonna A, Cabanás CG-L, Gregoriou M, Martelli GP, Mathiopoulos KD, Mercado-Blanco J, Saponari M, Tsoumani KT, Rao R (2016) Host response to biotic stresses. In: Rugini E, Baldoni L, Muleo R, Sebastiani L (eds) The olive tree genome. Springer International Publishing, Cham, pp 75–98. https://doi.org/10.1007/978-3-319-48887-5_6

    Chapter  Google Scholar 

  12. Sebastiani L, Gucci R, Kerem Z, Fernández JE (2016) Physiological responses to abiotic stresses. In: Rugini E, Baldoni L, Muleo R, Sebastiani L (eds) The olive tree genome. Springer International Publishing, Cham, pp 99–122. https://doi.org/10.1007/978-3-319-48887-5_7

    Chapter  Google Scholar 

  13. Koudounas K, Manioudaki ME, Kourti A, Banilas G, Hatzopoulos P (2015) Transcriptional profiling unravels potential metabolic activities of the olive leaf non-glandular trichome. Front Plant Sci 6:10. https://doi.org/10.3389/fpls.2015.00633

    Article  Google Scholar 

  14. Roka L, Koudounas K, Daras G, Zoidakis J, Vlahou A, Kalaitzis P, Hatzopoulos P (2018) Proteome of olive non-glandular trichomes reveals protective protein network against (a)biotic challenge. J Plant Physiol 231:210–218. https://doi.org/10.1016/j.jplph.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  15. Torreblanca R, Cerezo S, Palomo-Ríos E, Mercado JA, Pliego-Alfaro F (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tissue Organ Cult 103(1):61–69. https://doi.org/10.1007/s11240-010-9754-0

    Article  CAS  Google Scholar 

  16. Rugini E, Cristofori V, Silvestri C (2016) Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods. Biotechnol Adv 34(5):687–696. https://doi.org/10.1016/j.biotechadv.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  17. Haberman A, Bakhshian O, Cerezo-Medina S, Paltiel J, Adler C, Ben-Ari G, Mercado JA, Pliego-Alfaro F, Lavee S, Samach A (2017) A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant Cell Environ 40(8):1263–1280. https://doi.org/10.1111/pce.12922

    Article  CAS  PubMed  Google Scholar 

  18. Becker A, Lange M (2010) VIGS – genomics goes functional. Trends Plant Sci 15(1):1–4. https://doi.org/10.1016/j.tplants.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  19. Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A (2018) Virus-induced gene silencing: empowering genetics in non-model organisms. J Exp Bot 70(3):757–770. https://doi.org/10.1093/jxb/ery411

    Article  CAS  Google Scholar 

  20. Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16(12):656–665. https://doi.org/10.1016/j.tplants.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  21. Sasaki S, Yamagishi N, Yoshikawa N (2011) Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods 7(1):15. https://doi.org/10.1186/1746-4811-7-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawai T, Gonoi A, Nitta M, Yamagishi N, Yoshikawa N, Tao R (2016) Virus-induced gene silencing in various Prunus species with the Apple latent spherical virus vector. Sci Hortic 199:103–113. https://doi.org/10.1016/j.scienta.2015.12.031

    Article  CAS  Google Scholar 

  23. Ye J, Qu J, Bui HTN, Chua NH (2009) Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. Plant Biotechnol J 7(9):964–976. https://doi.org/10.1111/j.1467-7652.2009.00457.x

    Article  CAS  PubMed  Google Scholar 

  24. Jiang Y, Ye S, Wang L, Duan Y, Lu W, Liu H, Fan D, Zhang F, Luo K (2014) Heterologous gene silencing induced by tobacco rattle virus (TRV) is efficient for pursuing functional genomics studies in woody plants. Plant Cell Tissue Organ Cult 116(2):163–174. https://doi.org/10.1007/s11240-013-0393-0

    Article  CAS  Google Scholar 

  25. Zhao N, Zhang Y, Li Q, Li R, Xia X, Qin X, Guo H (2015) Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds. Plant Physiol Biochem 87:9–16. https://doi.org/10.1016/j.plaphy.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  26. Li X-J, Zhang J-Q, Wu Z-C, Lai B, Huang X-M, Qin Y-H, Wang H-C, Hu G-B (2016) Functional characterization of a glucosyltransferase gene, LcUFGT1, involved in the formation of cyanidin glucoside in the pericarp of Litchi chinensis. Physiol Plant 156(2):139–149. https://doi.org/10.1111/ppl.12391

    Article  CAS  PubMed  Google Scholar 

  27. Shen Z, Sun J, Yao J, Wang S, Ding M, Zhang H, Qian Z, Zhao N, Sa G, Zhao R, Shen X, Polle A, Chen S (2015) High rates of virus-induced gene silencing by tobacco rattle virus in Populus. Tree Physiol 35(9):1016–1029. https://doi.org/10.1093/treephys/tpv064

    Article  CAS  PubMed  Google Scholar 

  28. Agüero J, Vives MC, Velázquez K, Pina JA, Navarro L, Moreno P, Guerri J (2014) Effectiveness of gene silencing induced by viral vectors based on Citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants. Virology 460-461:154–164. https://doi.org/10.1016/j.virol.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Zhou B, Qi Y, Liu C, Liu Z, Ren X (2018) Biochemical and functional characterization of AcUFGT3a, a galactosyltransferase involved in anthocyanin biosynthesis in the red-fleshed kiwifruit (Actinidia chinensis). Physiol Plant 162(4):409–426. https://doi.org/10.1111/ppl.12655

    Article  CAS  PubMed  Google Scholar 

  30. Jin Z, Yan T, Chang C, Liu Z, Wang Y, Tang Z, Yu F (2016) Application of virus-induced gene silencing approach in Camptotheca acuminata. Plant Cell Tissue Organ Cult 126(3):533–540. https://doi.org/10.1007/s11240-016-1022-5

    Article  CAS  Google Scholar 

  31. Li R, Liu L, Dominic K, Wang T, Fan T, Hu F, Wang Y, Zhang L, Li L, Zhao W (2018) Mulberry (Morus alba) MmSK gene enhances tolerance to drought stress in transgenic mulberry. Plant Physiol Biochem 132:603–611. https://doi.org/10.1016/j.plaphy.2018.10.007

    Article  CAS  PubMed  Google Scholar 

  32. Senthil-Kumar M, Mysore KS (2014) Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9(7):1549–1562. https://doi.org/10.1038/nprot.2014.092

    Article  CAS  PubMed  Google Scholar 

  33. Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A 92(5):1679. https://doi.org/10.1073/pnas.92.5.1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hiriart J-B, Lehto K, Tyystjärvi E, Junttila T, Aro E-M (2002) Suppression of a key gene involved in chlorophyll biosynthesis by means of virus-inducing gene silencing. Plant Mol Biol 50(2):213–224. https://doi.org/10.1023/A:1016000627231

    Article  CAS  PubMed  Google Scholar 

  35. Ryu CM, Anand A, Kang L, Mysore Kirankumar S (2004) Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J 40(2):322–331. https://doi.org/10.1111/j.1365-313X.2004.02211.x

    Article  CAS  PubMed  Google Scholar 

  36. Liu H, Fu D, Zhu B, Yan H, Shen X, Zuo J, Zhu Y, Luo Y (2012) Virus-induced gene silencing in eggplant (Solanum melongena). J Integr Plant Biol 54(6):422–429. https://doi.org/10.1111/j.1744-7909.2012.01102.x

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Sun W, Zeng S, Huang W, Liu D, Hu W, Shen X, Wang Y (2014) Virus-induced gene silencing in two novel functional plants, Lycium barbarum L. and Lycium ruthenicum Murr. Sci Hortic 170:267–274. https://doi.org/10.1016/j.scienta.2014.03.023

    Article  CAS  Google Scholar 

  38. Harrison BD, Robinson DJ (1978) The tobraviruses. In: Lauffer MA, Bang FB, Maramorosch K, Smith KM (eds) Advances in virus research, vol 23. Academic Press, New York, pp 25–77. https://doi.org/10.1016/S0065-3527(08)60097-4

    Chapter  Google Scholar 

  39. Cooper JI (1979) Virus diseases of trees and shrubs. Institute of Terrestrial Ecology, Cambridge

    Google Scholar 

  40. Kitajima EW, Rodrigues JCV, Freitas-Astua J (2010) An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses. Sci Agric 67:348–371. https://doi.org/10.1590/S0103-90162010000300014

    Article  Google Scholar 

  41. Büttner C, von Bargen S, Bandte M, Mühlbach H-P (2013) Forest diseases caused by viruses. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CAB International, Wallingford, Oxfordshire, pp 50–75. https://doi.org/10.1079/9781780640402.0050

    Chapter  Google Scholar 

  42. Group TAP, Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181(1):1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  43. Misra RC, Sharma S, Sandeep GA, Chanotiya CS, Ghosh S (2017) Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis. New Phytol 214(2):706–720. https://doi.org/10.1111/nph.14412

    Article  CAS  PubMed  Google Scholar 

  44. Kim BM, Inaba J-i, Masuta C (2011) Virus induced gene silencing in Antirrhinum majus using the Cucumber mosaic virus vector: Functional analysis of the AINTEGUMENTA (Am-ANT) gene of A. majus. Hortic Environ Biotechnol 52(2):176. https://doi.org/10.1007/s13580-011-0172-y

    Article  Google Scholar 

  45. Preston JC, Barnett LL, Kost MA, Oborny NJ, Hileman LC (2014) Optimization of virus-induced gene silencing to facilitate evo-devo studies in the emerging model species Mimulus guttatus (Phrymaceae). Ann MO Bot Gard 99(3):301–312. https://doi.org/10.3417/2010120

    Article  Google Scholar 

  46. Kirigia D, Runo S, Alakonya A (2014) A virus-induced gene silencing (VIGS) system for functional genomics in the parasitic plant Striga hermonthica. Plant Methods 10(1):16. https://doi.org/10.1186/1746-4811-10-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Senthil-Kumar M, Mysore KS (2011) Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol J 9(7):797–806. https://doi.org/10.1111/j.1467-7652.2011.00589.x

    Article  CAS  PubMed  Google Scholar 

  48. Yan H, Shi S, Ma N, Cao X, Zhang H, Qiu X, Wang Q, Jian H, Zhou N, Zhang Z, Tang K (2018) Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers. J Integr Plant Biol 60(1):34–44. https://doi.org/10.1111/jipb.12599

    Article  CAS  PubMed  Google Scholar 

  49. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  50. Ahmed F, Dai X, Zhao PX (2015) Bioinformatics tools for achieving better gene silencing in plants. In: Mysore KS, Senthil-Kumar M (eds) Plant gene silencing: methods and protocols. Springer, New York, pp 43–60. https://doi.org/10.1007/978-1-4939-2453-0_3

    Chapter  Google Scholar 

Download references

Acknowledgments

P.H. acknowledges funding from General Secretariat of Research and Technology, Greece, National Emblematic Action “Olive Routes.” M.T. acknowledges funding from Greece and the European Union (European Social Fund, ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ). We also acknowledge the editors of this volume for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Konstantinos Koudounas or Polydefkis Hatzopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koudounas, K., Thomopoulou, M., Angeli, E., Tsitsekian, D., Rigas, S., Hatzopoulos, P. (2020). Virus-Induced Gene Silencing in Olive Tree (Oleaceae). In: Courdavault, V., Besseau, S. (eds) Virus-Induced Gene Silencing in Plants. Methods in Molecular Biology, vol 2172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0751-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0751-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0750-3

  • Online ISBN: 978-1-0716-0751-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics