Skip to main content

Modeling Protein–Protein or Protein–DNA/RNA Complexes Using the HDOCK Webserver

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2165))

Abstract

Protein–protein and protein–DNA/RNA interactions are involved in many cellular processes. Therefore, determining their complex structures at the atomic level is valuable to gain insights into these interactions. Because of the technical difficulties and high cost in experimental methods, computational approaches like molecular docking have been developed to predict the structures of macromolecular complexes in the last decades. To automatically integrate the available binding information from the PDB, we have developed HDOCK, a protein–protein/nucleic acid docking web server by combining template-based and free docking. In this chapter, we first briefly introduce our HDOCK server and then give a step-by-step description of docking bovine chymotrypsinogen A against its inhibitor (PDB ID: 1CGI). Two case studies of realistic examples are also discussed. The HDOCK server is freely available at http://hdock.phys.hust.edu.cn/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, Wiuf C (2008) Estimating the size of the human interactome. Proc Natl Acad Sci U S A 105(19):6959–6964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chruszcz M, Domagalski M, Osinski T, Wlodawer A, Minor W (2010) Unmet challenges of structural genomics. Curr Opin Struct Biol 20(5):587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rigden DJ, Rigden DJ (2009) From protein structure to function with bioinformatics. Springer, New York

    Book  Google Scholar 

  5. Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJE, Vajda S, Vakser I, Wodak SJ (2003) CAPRI: a critical assessment of PRedicted interactions. Proteins 52(1):2–9

    Article  CAS  PubMed  Google Scholar 

  6. Smith GR, Sternberg MJE (2002) Prediction of protein–protein interactions by docking methods. Curr Opin Struct Biol 12(1):28–35

    Article  PubMed  Google Scholar 

  7. Huang S-Y (2015) Exploring the potential of global protein–protein docking: an overview and critical assessment of current programs for automatic ab initio docking. Drug Discov Today 20(8):969–977

    Article  CAS  PubMed  Google Scholar 

  8. Ritchie DW (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9(1):1–15

    Article  CAS  PubMed  Google Scholar 

  9. Yan Y, Wen Z, Wang X, Huang SY (2017) Addressing recent docking challenges: a hybrid strategy to integrate template-based and free protein–protein docking. Proteins 85(3):497–512

    Article  CAS  PubMed  Google Scholar 

  10. Vreven T, Hwang H, Pierce BG, Weng Z (2014) Evaluating template-based and template-free protein-protein complex structure prediction. Brief Bioinform 15(2):169–176

    Article  CAS  PubMed  Google Scholar 

  11. Szilagyi A, Zhang Y (2014) Template-based structure modeling of protein–protein interactions. Curr Opin Struct Biol 24:10–23

    Article  CAS  PubMed  Google Scholar 

  12. Kundrotas PJ, Zhu Z, Janin J, Vakser IA (2012) Templates are available to model nearly all complexes of structurally characterized proteins. Proc Natl Acad Sci U S A 109(24):9438–9441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan Y, Huang S-Y (2018) Protein–protein docking with improved shape complementarity. In: International conference on intelligent computing. Springer, New York, pp 600–605

    Google Scholar 

  14. Chen R, Weng Z (2003) A novel shape complementarity scoring function for protein–protein docking. Proteins 51(3):397–408

    Article  CAS  PubMed  Google Scholar 

  15. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89(6):2195–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen R, Li L, Weng Z (2003) ZDOCK: An initial-stage protein-docking algorithm. Proteins 52(1):80–87

    Article  CAS  PubMed  Google Scholar 

  17. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: a fully automated algorithm for protein–protein docking. Nucleic Acids Res 32(suppl_2):W96–W99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kozakov D, Brenke RComeau SR, Vajda S (2010) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65(2):392–406

    Article  Google Scholar 

  19. Chen R, Weng Z (2002) Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins 47(3):281–294

    Article  CAS  PubMed  Google Scholar 

  20. Mintseris J, Pierce B, Wiehe K, Anderson R, Chen R, Weng Z (2007) Integrating statistical pair potentials into protein complex prediction. Proteins 69(3):511–520

    Article  CAS  PubMed  Google Scholar 

  21. Huang S-Y, Zou X (2010) MDockPP: a hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19. Proteins 78(15):3096–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan Y, Zhang D, Zhou P, Li B, Huang S-Y (2017) HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45(W1):W365–W373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang SY, Zou X (2008) An iterative knowledge-based scoring function for protein–protein recognition. Proteins 72(2):557–579

    Article  CAS  PubMed  Google Scholar 

  24. Huang S-Y, Zou X (2014) A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res 42(7):e55–e55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang S-Y, Yan C, Grinter SZ, Chang S, Jiang L, Zou X (2013) Inclusion of the orientational entropic effect and low-resolution experimental information for protein-protein docking in critical assessment of PRedicted interactions (CAPRI). Proteins 81(12):2183–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lensink MF, Velankar S, Wodak SJ (2017) Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition. Proteins 85(3):359–377

    Article  CAS  PubMed  Google Scholar 

  27. Imran H, Manikandan PN, Prabhu D, Dharuman V, Jeyakanthan J, Hahn JH (2019) Ultra selective label free electrochemical detection of cancer prognostic p53-antibody at DNA functionalized graphene. Sens Biosensing Res 23:100261

    Article  Google Scholar 

  28. Deep A, Kaundal S, Thakur KG, Tiwari P, Agarwal S, Kidwai S, Singh R (2018) Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin–antitoxin system: targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Res 46(21):11639–11655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yeh CC, Luo JL, Nhut Phan N, Cheng YC, Chow LP, Tsai MH, Chuang EY, Lai LC (2018) Different effects of long noncoding RNA NDRG1-OT1 fragments on NDRG1 transcription in breast cancer cells under hypoxia. RNA Biol 15(12):1487–1498

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu H, Wang H, Jiang W, Lian Z (2018) The evolutionary characteristics and structural biology of Gallus toll-like receptor 21. J Mol Recognit 31(6):e2696

    Article  PubMed  Google Scholar 

  31. Soboleva SE, Zakharova OD, Sedykh SE, Ivanisenko NV, Buneva VN, Nevinsky GA (2019) DNase and RNase activities of fresh cow milk lactoferrin. J Mol Recognit 32:e2777

    Article  PubMed  Google Scholar 

  32. Hildebrand PW, Rose AS (2015) NGL viewer: a web application for molecular visualization. Nucleic Acids Res 43(W1):W576–W579

    Article  PubMed  PubMed Central  Google Scholar 

  33. Prlić A, Bradley AR, Duarte JM, Rose PW, Rose AS, Valasatava Y (2018) NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 34(21):3755–3758

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hecht HJ, Szardenings M, Collins J, Schomburg D (1991) Three-dimensional structure of the complexes between bovine chymotrypsinogen a and two recombinant variants of human pancreatic secretory trypsin inhibitor (Kazal-type). J Mol Biol 220(3):711–722

    Article  CAS  PubMed  Google Scholar 

  35. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (grant No. 31670724), the National Key Research and Development Program of China (grant Nos. 2016YFC1305800 and 2016YFC1305805), and the startup grant of the Huazhong University of Science and Technology (grant No. 3004012104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-You Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yan, Y., Huang, SY. (2020). Modeling Protein–Protein or Protein–DNA/RNA Complexes Using the HDOCK Webserver. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 2165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0708-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0708-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0707-7

  • Online ISBN: 978-1-0716-0708-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics