Skip to main content

Modeling of Protein Complexes and Molecular Assemblies with pyDock

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2165))

Abstract

The study of the 3D structural details of protein interactions is essential to understand biomolecular functions at the molecular level. In this context, the limited availability of experimental structures of protein–protein complexes at atomic resolution is propelling the development of computational docking methods that aim to complement the current structural coverage of protein interactions. One of these docking approaches is pyDock, which uses van der Waals, electrostatics, and desolvation energy to score docking poses generated by a variety of sampling methods, typically FTDock or ZDOCK. The method has shown a consistently good prediction performance in community-wide assessment experiments like CAPRI or CASP, and has provided biological insights and insightful interpretation of experiments by modeling many biomolecular interactions of biomedical and biotechnological interest. Here, we describe in detail how to perform structural modeling of protein assemblies with pyDock, and the application of its modules to different biomolecular recognition phenomena, such as modeling of binding mode, interface, and hot-spot prediction, use of restraints based on experimental data, inclusion of low-resolution structural data, binding affinity estimation, or modeling of homo- and hetero-oligomeric assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang S-Y (2014) Search strategies and evaluation in protein-protein docking: principles, advances and challenges. Drug Discov Today 19(8):1081–1096. https://doi.org/10.1016/j.drudis.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  2. David WR (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9(1):1–15. https://doi.org/10.2174/138920308783565741

    Article  Google Scholar 

  3. Cheng TM-K, Blundell TL, Fernandez-Recio J (2007) pyDock: electrostatics and desolvation for effective scoring of rigid-body protein–protein docking. Proteins 68(2):503–515. https://doi.org/10.1002/prot.21419

    Article  CAS  PubMed  Google Scholar 

  4. Gabb HA, Jackson RM, Sternberg MJE (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272(1):106–120. https://doi.org/10.1006/jmbi.1997.1203

    Article  CAS  PubMed  Google Scholar 

  5. Chen R, Weng Z (2003) A novel shape complementarity scoring function for protein-protein docking. Proteins 51(3):397–408. https://doi.org/10.1002/prot.10334

    Article  CAS  PubMed  Google Scholar 

  6. Solernou A, Fernandez-Recio J (2010) Protein docking by Rotation-Based Uniform Sampling (RotBUS) with fast computing of intermolecular contact distance and residue desolvation. BMC Bioinformatics 11:352–352. https://doi.org/10.1186/1471-2105-11-352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moal IH, Torchala M, Bates PA, Fernández-Recio J (2013) The scoring of poses in protein-protein docking: current capabilities and future directions. BMC Bioinformatics 14(1):286. https://doi.org/10.1186/1471-2105-14-286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barradas-Bautista D, Moal IH, Fernández-Recio J (2017) A systematic analysis of scoring functions in rigid-body protein docking: The delicate balance between the predictive rate improvement and the risk of overtraining. Proteins 85(7):1287–1297. https://doi.org/10.1002/prot.25289

    Article  CAS  PubMed  Google Scholar 

  9. Jiménez-García B, Roel-Touris J, Romero-Durana M, Vidal M, Jiménez-González D, Fernández-Recio J (2017) LightDock: a new multi-scale approach to protein–protein docking. Bioinformatics 34(1):49–55. https://doi.org/10.1093/bioinformatics/btx555

    Article  CAS  Google Scholar 

  10. Jiménez-García B, Pons C, Fernández-Recio J (2013) pyDockWEB: a web server for rigid-body protein–protein docking using electrostatics and desolvation scoring. Bioinformatics 29(13):1698–1699. https://doi.org/10.1093/bioinformatics/btt262

    Article  CAS  PubMed  Google Scholar 

  11. Fernández-Recio J, Totrov M, Abagyan R (2004) Identification of protein–protein interaction sites from docking energy landscapes. J Mol Biol 335(3):843–865. https://doi.org/10.1016/j.jmb.2003.10.069

    Article  CAS  PubMed  Google Scholar 

  12. Grosdidier S, Fernández-Recio J (2008) Identification of hot-spot residues in protein-protein interactions by computational docking. BMC Bioinformatics 9:447–447. https://doi.org/10.1186/1471-2105-9-447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pons C, D’Abramo M, Svergun DI, Orozco M, Bernadó P, Fernández-Recio J (2010) Structural characterization of protein–protein complexes by integrating computational docking with small-angle scattering data. J Mol Biol 403(2):217–230. https://doi.org/10.1016/j.jmb.2010.08.029

    Article  CAS  PubMed  Google Scholar 

  14. Jiménez-García B, Fernández-Recio J, Pons C, Svergun DI, Bernadó P (2015) pyDockSAXS: protein–protein complex structure by SAXS and computational docking. Nucleic Acids Res 43(W1):W356–W361. https://doi.org/10.1093/nar/gkv368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiménez-García B, Bernado P, Fernández-Recio J (2020) Structural characterization of protein-protein interactions with pyDockSAXS. Methods Mol Biol 2112:131–144

    Article  Google Scholar 

  16. Chelliah V, Blundell TL, Fernández-Recio J (2006) Efficient restraints for protein–protein docking by comparison of observed amino acid substitution patterns with those predicted from local environment. J Mol Biol 357(5):1669–1682. https://doi.org/10.1016/j.jmb.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  17. Pérez-Cano L, Romero-Durana M, Fernández-Recio J (2017) Structural and energy determinants in protein-RNA docking. Methods 118-119:163–170. https://doi.org/10.1016/j.ymeth.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Lucas M, Gaspar AH, Pallara C, Rojas AL, Fernández-Recio J, Machner MP, Hierro A (2014) Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5. Proc Natl Acad Sci 111(34):E3514. https://doi.org/10.1073/pnas.1405391111

    Article  CAS  PubMed  Google Scholar 

  19. Rosell A, Meury M, Álvarez-Marimon E, Costa M, Pérez-Cano L, Zorzano A, Fernández-Recio J, Palacín M, Fotiadis D (2014) Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc. Proc Natl Acad Sci U S A 111(8):2966–2971. https://doi.org/10.1073/pnas.1323779111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bonsor DA, Grishkovskaya I, Dodson EJ, Kleanthous C (2007) Molecular mimicry enables competitive recruitment by a natively disordered protein. J Am Chem Soc 129(15):4800–4807. https://doi.org/10.1021/ja070153n

    Article  CAS  PubMed  Google Scholar 

  22. Méndez R, Leplae R, De Maria L, Wodak SJ (2003) Assessment of blind predictions of protein–protein interactions: current status of docking methods. Proteins 52(1):51–67. https://doi.org/10.1002/prot.10393

    Article  CAS  PubMed  Google Scholar 

  23. Ray MC, Germon P, Vianney A, Portalier R, Lazzaroni JC (2000) Identification by genetic suppression of Escherichia coli TolB residues important for TolB-Pal interaction. J Bacteriol 182(3):821–824. https://doi.org/10.1128/JB.182.3.821-824.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biologicalmacromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  25. Cheng TMK, Blundell TL, Fernandez-Recio J (2008) Structural assembly of two-domain proteins by rigid-body docking. BMC Bioinformatics 9(1):441. https://doi.org/10.1186/1471-2105-9-441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159. https://doi.org/10.1007/978-1-60327-058-8_8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science (grant BIO2016-79930-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Fernández-Recio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rosell, M., Rodríguez-Lumbreras, L.A., Fernández-Recio, J. (2020). Modeling of Protein Complexes and Molecular Assemblies with pyDock. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 2165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0708-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0708-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0707-7

  • Online ISBN: 978-1-0716-0708-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics