Skip to main content

In Vitro Assays for Comparing the Specificity of First- and Next-Generation CRISPR/Cas9 Systems

  • Protocol
  • First Online:
CRISPR Guide RNA Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2162))

Abstract

CRISPR/Cas9 has revolutionized the ability to edit cellular DNA and is poised to transform the treatment of genetic diseases. One of the major concerns regarding its therapeutic use is the potential for off-target DNA cleavage, which could have detrimental consequences in vivo. To circumvent this, a number of strategies have been employed to develop next-generation CRISPR/Cas9 systems with improved specificity. These include the development of new protein variants of Cas9, as well as chemically modified guide RNA molecules. Here, we provide detailed protocols for two in vitro methods that enable the specificity of first- and next-generation CRISPR/Cas9 systems to be compared, and we demonstrate their applicability to evaluating chemically modified guide RNAs. One of these assays allows the specificity of different guide RNA/Cas9 complexes to be compared on a set of known off-target DNA sequences, while the second provides a broad specificity profile based on cleavage of a massive library of potential off-target DNA sequences. Collectively, these assays may be used to evaluate the specificity of different CRISPR/Cas9 systems on any DNA target sequence in a time- and cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170. https://doi.org/10.1126/science.1179555

    Article  CAS  PubMed  Google Scholar 

  2. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9(6):467–477. https://doi.org/10.1038/nrmicro2577

    Article  CAS  PubMed  Google Scholar 

  3. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997. https://doi.org/10.1126/science.1247997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakade S, Yamamoto T, Sakuma T (2017) Cas9, Cpf1 and C2c1/2/3—what’s next? Bioengineered 8(3):265–273. https://doi.org/10.1080/21655979.2017.1282018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34(9):933–941. https://doi.org/10.1038/nbt.3659

    Article  CAS  PubMed  Google Scholar 

  6. Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529. https://doi.org/10.1146/annurev-biophys-062215-010822

    Article  CAS  PubMed  Google Scholar 

  7. Huai C, Jia C, Sun R, Xu P, Min T, Wang Q, Zheng C, Chen H, Lu D (2017) CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Hum Genet. https://doi.org/10.1007/s00439-017-1801-z

  8. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA (2015) STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348(6242):1477–1481. https://doi.org/10.1126/science.aab1452

    Article  CAS  PubMed  Google Scholar 

  10. Ablain J, Zon LI (2016) Tissue-specific gene targeting using CRISPR/Cas9. Methods Cell Biol 135:189–202. https://doi.org/10.1016/bs.mcb.2016.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng R, Peng J, Yan Y, Cao P, Wang J, Qiu C, Tang L, Liu D, Tang L, Jin J, Huang X, He F, Zhang P (2014) Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett 588(21):3954–3958. https://doi.org/10.1016/j.febslet.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  12. Hubbard BP, Badran AH, Zuris JA, Guilinger JP, Davis KM, Chen L, Tsai SQ, Sander JD, Joung JK, Liu DR (2015) Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat Methods 12(10):939–942. https://doi.org/10.1038/nmeth.3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R (2013) TALEN or Cas9 – rapid, efficient and specific choices for genome modifications. J Genet Genomics 40(6):281–289. https://doi.org/10.1016/j.jgg.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  14. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869–874. https://doi.org/10.1038/nbt.3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tycko J, Myer VE, Hsu PD (2016) Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell 63(3):355–370. https://doi.org/10.1016/j.molcel.2016.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu X, Duan D, Chen SJ (2017) CRISPR-Cas9 cleavage efficiency correlates strongly with target-sgRNA folding stability: from physical mechanism to off-target assessment. Sci Rep 7(1):143. https://doi.org/10.1038/s41598-017-00180-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O'Geen H, Yu AS, Segal DJ (2015) How specific is CRISPR/Cas9 really? Curr Opin Chem Biol 29:72–78. https://doi.org/10.1016/j.cbpa.2015.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88. https://doi.org/10.1126/science.aad5227

    Article  CAS  PubMed  Google Scholar 

  19. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495. https://doi.org/10.1038/nature16526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, Lorenzin F, Prandi D, Romanel A, Demichelis F, Inga A, Cereseto A (2018) A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. https://doi.org/10.1038/nbt.4066

  21. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550(7676):407–410. https://doi.org/10.1038/nature24268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi GCG, Zhou P, Yuen CTL, Chan BKC, Xu F, Bao S, Chu HY, Thean D, Tan K, Wong KH, Zheng Z, Wong ASL (2019) Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9. Nat Methods. https://doi.org/10.1038/s41592-019-0473-0

  23. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284. https://doi.org/10.1038/nbt.2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rueda FO, Bista M, Newton MD, Goeppert AU, Cuomo ME, Gordon E, Kroner F, Read JA, Wrigley JD, Rueda D, Taylor BJM (2017) Mapping the sugar dependency for rational generation of a DNA-RNA hybrid-guided Cas9 endonuclease. Nat Commun 8(1):1610. https://doi.org/10.1038/s41467-017-01732-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin H, Song CQ, Suresh S, Kwan SY, Wu Q, Walsh S, Ding J, Bogorad RL, Zhu LJ, Wolfe SA, Koteliansky V, Xue W, Langer R, Anderson DG (2018) Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat Chem Biol 14(3):311–316. https://doi.org/10.1038/nchembio.2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cromwell CR, Sung K, Park J, Krysler AR, Jovel J, Kim SK, Hubbard BP (2018) Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat Commun 9(1):1448. https://doi.org/10.1038/s41467-018-03927-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ryan DE, Taussig D, Steinfeld I, Phadnis SM, Lunstad BD, Singh M, Vuong X, Okochi KD, McCaffrey R, Olesiak M, Roy S, Yung CW, Curry B, Sampson JR, Bruhn L, Dellinger DJ (2018) Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 46(2):792–803. https://doi.org/10.1093/nar/gkx1199

    Article  CAS  PubMed  Google Scholar 

  28. O'Reilly D, Kartje ZJ, Ageely EA, Malek-Adamian E, Habibian M, Schofield A, Barkau CL, Rohilla KJ, DeRossett LB, Weigle AT, Damha MJ, Gagnon KT (2019) Extensive CRISPR RNA modification reveals chemical compatibility and structure-activity relationships for Cas9 biochemical activity. Nucleic Acids Res 47(2):546–558. https://doi.org/10.1093/nar/gky1214

    Article  CAS  PubMed  Google Scholar 

  29. Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA (2019) Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 37(6):657–666. https://doi.org/10.1038/s41587-019-0095-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843. https://doi.org/10.1038/nbt.2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC Discovery/Discovery Accelerator Supplement (RGPIN-2016-0638) and CIHR (PS-408552) grants to B.P.H. We thank Dr. Juan Jovel, Sudip Subedi, and the members of the Applied Genomics Core at the University of Alberta for their technical assistance with next-generation sequencing. We thank Bio-Synthesis Inc. (Texas) for providing the 2′OMePACE-modified guide RNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil P. Hubbard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cromwell, C.R., Hubbard, B.P. (2021). In Vitro Assays for Comparing the Specificity of First- and Next-Generation CRISPR/Cas9 Systems. In: Fulga, T.A., Knapp, D.J.H.F., Ferry, Q.R.V. (eds) CRISPR Guide RNA Design. Methods in Molecular Biology, vol 2162. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0687-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0687-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0686-5

  • Online ISBN: 978-1-0716-0687-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics