Skip to main content

Immunofluorescent Localization of Proteins in Schistosoma mansoni

  • Protocol
  • First Online:
Schistosoma mansoni

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2151))

Abstract

Immunofluorescence allows the detection, visualization, and localization of proteins by using the ability of antibodies to firmly bind to specific antigens. Proteins must be accessible to thorough interaction with the specific antibodies. Different immune evasion mechanisms of parasites are directed to hamper or prevent access of antibodies to critical proteins or virulence factors. The blood fluke Schistosoma mansoni would not survive a day in the host blood capillaries if antibodies were able to readily bind to proteins located at the surface and mediate its attrition and demise by the complement system and/or the FcγR- or FcαR-bearing leukocytes. The worm surface is the area of parasite-host interaction and the route to critical nutrients, but is selectively permeable, allowing access of nutrient molecules but not host antibodies. Gentle procedures, which, however, are not commonly in use in vivo, are required to increase the permeability of the parasite outer membrane shield to just allow access of specific antibodies and identify and localize the proteins at the apical surface. Robust methods involving acetone, methanol, and Triton X-100 treatment lead to disintegration of the dual lipid bilayer cover with exposure of the proteins located in the tegument beneath. Internal proteins may not be accessed except following cryostat or paraffin sectioning. Accordingly, vaccine-induced specific antibodies to the apical surface or tegument proteins are unable to harm intact parasites. Specific antibodies to surface membrane proteins may only add to the action of administered or endo schistosomicides via acceleration of killing and interference with repair of severely and lightly impacted parasites, respectively. Therefore, careful immunofluorescent localization of S. mansoni proteins is important for devising the different control strategies against infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grossman AI, Short RB, Cain GD (1981) Karyotype evolution and sex chromosome differentiation in Schistosomes (Trematoda, Schistosomatidae). Chromosoma 84:413–430

    CAS  PubMed  Google Scholar 

  2. Walker AJ (2011) Insights into the functional biology of schistosomes. Parasit Vectors 4:203

    PubMed  PubMed Central  Google Scholar 

  3. Pan SC (1996) Schistosoma mansoni: the ultrastructure of larval morphogenesis in Biomphalaria glabrata and of associated host-parasite interactions. Jpn J Med Sci Biol 49:129–149

    CAS  PubMed  Google Scholar 

  4. Dorsey CH, Cousin CE, Lewis FA, Stirewalt MA (2002) Ultrastructure of the Schistosoma mansoni cercaria. Micron 33:279–323. Review

    PubMed  Google Scholar 

  5. Collins JJ 3rd, King RS, Cogswell A, Williams DL, Newmark PA (2011) An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy. PLoS Negl Trop Dis 5:e1009

    PubMed  PubMed Central  Google Scholar 

  6. Hockley DJ, McLaren DJ (1973) Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercaria to adult worm. Int J Parasitol 3:13–25

    CAS  PubMed  Google Scholar 

  7. Mclaren DJ, Hockley DJ (1977) Blood flukes have a double outer membrane. Nature 269:147–149

    CAS  PubMed  Google Scholar 

  8. Foley M, Kusel JR, Garland PB (1988) Changes in the organization of the surface membrane upon transformation of cercariae to schistosomula of the helminth parasite Schistosoma mansoni. Parasitology 96:85–97

    PubMed  Google Scholar 

  9. Gobert GN, Chai M, McManus DP (2007) Biology of the schistosome lung-stage schistosomulum. Parasitology 134:453–460

    CAS  PubMed  Google Scholar 

  10. Dean DA (1977) Decreased binding of cytotoxic antibody by developing Schistosoma mansoni. Evidence for a surface change independent of host antigen adsorption and membrane turnover. J Parasitol 63:418–426

    CAS  PubMed  Google Scholar 

  11. Pearce EJ, Basch PF, Sher A (1986) Evidence that the reduced surface antigenicity of developing Schistosoma mansoni schistosomula is due to antigen shedding rather than host molecule acquisition. Parasite Immunol 8:79–94

    CAS  PubMed  Google Scholar 

  12. Pearce EJ, James SL (1986) Post lung-stage schistosomula of Schistosoma mansoni exhibit transient susceptibility to macrophage-mediated cytotoxicity in vitro that may relate to late phase killing in vivo. Parasite Immunol 8:513–527

    CAS  PubMed  Google Scholar 

  13. Dalton JP, Lewis SA, Aronstein WS, Strand M (1987) Schistosoma mansoni: immunogenic glycoproteins of the cercarial glycocalyx. Exp Parasitol 63:215–226

    CAS  PubMed  Google Scholar 

  14. Dalton JP, Tom TD, Strand M (1987) Cloning of a cDNA encoding a surface antigen of Schistosoma mansoni schistosomula recognized by sera of vaccinated mice. Proc Natl Acad Sci U S A 84:4268–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tallima H, El Ridi R (2008) Schistosoma mansoni glyceraldehyde 3-phosphate dehydrogenase is a lung-stage schistosomula surface membrane antigen. Folia Parasitol (Praha) 55:180–186

    Google Scholar 

  16. McWilliam HE, Driguez P, Piedrafita D, Maupin KA, Haab BB, McManus DP, Meeusen EN (2013) The developing schistosome worms elicit distinct immune responses in different tissue regions. Immunol Cell Biol 91:477–485

    CAS  PubMed  Google Scholar 

  17. Elbaz T, Esmat G (2013) Hepatic and intestinal schistosomiasis: review. J Adv Res 4:445–452

    PubMed  PubMed Central  Google Scholar 

  18. Barsoum RS, Esmat G, El-Baz T (2013) Human schistosomiasis: clinical perspective: review. J Adv Res 4:433–444

    PubMed  PubMed Central  Google Scholar 

  19. Adenowo AF, Oyinloye BE, Ogunyinka BI, Kappo AP (2015) Impact of human schistosomiasis in sub-Saharan Africa. Braz J Infect Dis 19:196–205

    PubMed  Google Scholar 

  20. Zoni AC, Catalá L, Ault SK (2016) Schistosomiasis prevalence and intensity of infection in Latin America and the Caribbean countries, 1942–2014: a systematic review in the context of a regional elimination goal. PLoS Negl Trop Dis 10:e0004493

    PubMed  PubMed Central  Google Scholar 

  21. World Health Organization (2018) Schistosomiasis. http://www.who.int/news-room/fact-sheets/detail/schistosomiasis

  22. Coulibaly JT, Ouattara M, Barda B, Utzinger J, N'Goran EK, Keiser J (2018) A rapid appraisal of factors influencing praziquantel treatment compliance in two communities endemic for schistosomiasis in Côte d'Ivoire. Trop Med Infect Dis 3:69

    PubMed Central  Google Scholar 

  23. Adriko M, Faust CL, Carruthers LV, Moses A, Tukahebwa EM, Lamberton PHL (2018) Low praziquantel treatment coverage for Schistosoma mansoni in Mayuge district, Uganda, due to the absence of treatment opportunities, rather than systematic non-compliance. Trop Med Infect Dis 3:111

    PubMed Central  Google Scholar 

  24. El Ridi R, Tallima H (2006) Equilibrium in lung schistosomula sphingomyelin breakdown and biosynthesis allows very small molecules, but not antibody, to access proteins at the host-parasite interface. J Parasitol 92:730–737

    PubMed  Google Scholar 

  25. Tallima H, Al-Halbosiy MF, El Ridi R (2011) Enzymatic activity and immunolocalization of Schistosoma mansoni and Schistosoma haematobium neutral sphingomyelinase. Mol Biochem Parasitol 178:23–28

    CAS  PubMed  Google Scholar 

  26. Migliardo F, Tallima H, El Ridi R (2014) Is there a sphingomyelin-based hydrogen bond barrier at the mammalian host-schistosome parasite interface? Cell Biochem Biophys 68:359–367

    CAS  PubMed  Google Scholar 

  27. Migliardo F, Tallima H, El Ridi R (2014) Rigidity and resistance of larval- and adult schistosomes-medium interface. Biochem Biophys Res Commun 446:255–260

    CAS  PubMed  Google Scholar 

  28. De Jesus JW, DA Cunha Melo JR, Baba EH, Coelho PM, Kusel JR (2015) The skin migratory stage of the schistosomulum of Schistosoma mansoni has a surface showing greater permeability and activity in membrane internalisation than other forms of skin or mechanical schistosomula. Parasitology 142:1143–1151

    Google Scholar 

  29. Slotte JP (2016) The importance of hydrogen bonding in sphingomyelin's membrane interactions with co-lipids. Biochim Biophys Acta 1858:304–310

    CAS  PubMed  Google Scholar 

  30. Mitsui Y, Kato K (2018) Application of non-fluorescent dyes to assess the antischistosomal effect of antimalarial drugs on Schistosoma mansoni adult worms. Jpn J Infect Dis 71:382–387

    CAS  PubMed  Google Scholar 

  31. Tran MH, Pearson MS, Bethony JM, Smyth DJ, Jones MK, Duke M, Don TA, McManus DP, Correa-Oliveira R, Loukas A (2006) Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat Med 12:835–840

    CAS  PubMed  Google Scholar 

  32. Molehin AJ, Sennoune SR, Zhang W, Rojo JU, Siddiqui AJ, Herrera KA et al (2017) Cross-species prophylactic efficacy of Sm-p80-based vaccine and intracellular localization of Sm-p80/Sm-p80 ortholog proteins during development in Schistosoma mansoni, Schistosoma japonicum, and Schistosoma haematobium. Parasitol Res 116:3175–3188

    PubMed  PubMed Central  Google Scholar 

  33. Wang Q, Da'dara AA, Skelly PJ (2017) The human blood parasite Schistosoma mansoni expresses extracellular tegumental calpains that cleave the blood clotting protein fibronectin. Sci Rep 7:12912

    PubMed  PubMed Central  Google Scholar 

  34. McKenzie M, Kirk RS, Walker AJ (2018) Glucose uptake in the human pathogen Schistosoma mansoni is regulated through Akt/protein kinase B signaling. J Infect Dis 218:152–164

    CAS  PubMed  Google Scholar 

  35. Doenhoff MJ, Modha J, Lambertucci JR (1988) Anti-schistosome chemotherapy enhanced by antibodies specific for a parasite esterase. Immunology 65:507–510

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fallon PG, Cooper RO, Probert AJ, Doenhoff MJ (1992) Immune-dependent chemotherapy of schistosomiasis. Parasitology 105:S41–S48. Review

    PubMed  Google Scholar 

  37. Fallon PG, Doenhoff MJ (1995) Active immunization of mice with Schistosoma mansoni worm membrane antigens enhances efficacy of praziquantel. Parasite Immunol 17:261–268

    CAS  PubMed  Google Scholar 

  38. El Ridi R, Tallima H, Salah M, Aboueldahab M, Fahmy OM, Al-Halbosiy MF, Mahmoud SS (2012) Efficacy and mechanism of action of arachidonic acid in the treatment of hamsters infected with Schistosoma mansoni or Schistosoma haematobium. Int J Antimicrob Agents 39:232–239

    PubMed  Google Scholar 

  39. Reimers N, Homann A, Höschler B, Langhans K, Wilson RA, Pierrot C, Khalife J, Grevelding CG, Chalmers IW, Yazdanbakhsh M, Hoffmann KF, Hokke CH, Haas H, Schramm G (2015) Drug-induced exposure of Schistosoma mansoni antigens SmCD59a and SmKK7. PLoS Negl Trop Dis 9:e0003593

    PubMed  PubMed Central  Google Scholar 

  40. Smithers SR, Terry RJ (1965) The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 55:695–700

    CAS  PubMed  Google Scholar 

  41. Tucker MS, Karunaratne LB, Lewis FA, Freitas TC, Liang YS (2013) Schistosomiasis. Curr Protoc Immunol 103:19.1.1–19.1.58

    Google Scholar 

  42. Konstantinou GN (2017) Enzyme-linked immunosorbent assay (ELISA). Methods Mol Biol 1592:79–94

    CAS  PubMed  Google Scholar 

  43. El Ridi R, Tallima H, Mohamed SH, Montash M (2004) Depletion of Schistosoma mansoni lung-stage schistosomula cholesterol by methyl-beta-cyclodextrin dramatically increases specific antibody binding to surface membrane antigens. J Parasitol 90:727–732

    PubMed  Google Scholar 

  44. Tallima H, Salah M, El-Ridi R (2005) In vitro and in vivo effects of unsaturated fatty acids on Schistosoma mansoni and S. haematobium lung-stage larvae. J Parasitol 91:1094–1102

    CAS  PubMed  Google Scholar 

  45. Hackett F (1993) The culture of Schistosoma mansoni and production of life cycle stages. Methods Mol Biol 21:89–99

    CAS  PubMed  Google Scholar 

  46. Mann VH, Morales ME, Rinaldi G, Brindley PJ (2010) Culture for genetic manipulation of developmental stages of Schistosoma mansoni. Parasitology 137:451–462

    CAS  PubMed  Google Scholar 

  47. Schulte L, Lovas E, Green K, Mulvenna J, Gobert GN, Morgan G, Jones MK (2013) Tetraspanin-2 localisation in high pressure frozen and freeze-substituted Schistosoma mansoni adult males reveals its distribution in membranes of tegumentary vesicles. Int J Parasitol 43:785–793

    CAS  PubMed  Google Scholar 

  48. Sepulveda J, Tremblay JM, DeGnore JP, Skelly PJ, Shoemaker CB (2010) Schistosoma mansoni host-exposed surface antigens characterized by sera and recombinant antibodies from schistosomiasis-resistant rats. Int J Parasitol 40:1407–1417

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Vitha S, Osteryoung KW (2011) Immunofluorescence microscopy for localization of Arabidopsis chloroplast proteins. Methods Mol Biol 774:33–58

    CAS  PubMed  Google Scholar 

  50. Alkema M, Goumans MJ, Kruithof BPT (2019) Immunofluorescent visualization of BMP signaling activation on paraffin-embedded tissue sections. Methods Mol Biol 1891:191–200

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

El Ridi, R., Tallima, H. (2020). Immunofluorescent Localization of Proteins in Schistosoma mansoni. In: Timson, D.J. (eds) Schistosoma mansoni. Methods in Molecular Biology, vol 2151. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0635-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0635-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0634-6

  • Online ISBN: 978-1-0716-0635-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics