Skip to main content

Apoplastic Fluid Preparation from Arabidopsis thaliana Leaves Upon Interaction with a Nonadapted Powdery Mildew Pathogen

  • Protocol
  • First Online:
Plant Proteomics

Abstract

Proteins in the extracellular space (apoplast) play a crucial role at the interface between plant cells and their proximal environment. Consequently, it is not surprising that plants actively control the apoplastic proteomic profile in response to biotic and abiotic cues. Comparative quantitative proteomics of plant apoplastic fluids is therefore of general interest in plant physiology. We here describe an efficient method to isolate apoplastic fluids from Arabidopsis thaliana leaves inoculated with a nonadapted powdery mildew pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delaunois B, Jeandet P, Clément C et al (2014) Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. Front Plant Sci 5:249

    Article  Google Scholar 

  2. Uemura T, Nakano RT, Takagi J et al (2019) A Golgi-released subpopulation of the trans-Golgi network mediates protein secretion in arabidopsis. Plant Physiol 179:519–532

    Article  CAS  Google Scholar 

  3. Ruhe J, Agler MT, Placzek A et al (2016) Obligate biotroph pathogens of the genus albugo are better adapted to active host defense compared to niche competitors. Front Plant Sci 7:820

    Article  Google Scholar 

  4. Kusumawati L, Imin N, Djordjevic MA (2008) Characterization of the secretome of suspension cultures of Medicago species reveals proteins important for defense and development. J Proteome Res 7:4508–4520

    Article  CAS  Google Scholar 

  5. Oh IS, Park AR, Bae MS et al (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832

    Article  CAS  Google Scholar 

  6. Okushima Y, Koizumi N, Kusano T, Sano H (2000) Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol Biol 42:479–488

    Article  CAS  Google Scholar 

  7. Cho WK, Chen XY, Chu H et al (2009) Proteomic analysis of the secretome of rice calli. Physiol Plant 135:331–341

    Article  CAS  Google Scholar 

  8. Waghmare S, Lileikyte E, Karnik R et al (2018) SNAREs SYP121 and SYP122 mediate the secretion of distinct cargo subsets. Plant Physiol 178:1679–1688

    Article  CAS  Google Scholar 

  9. Lohaus G, Pennewiss K, Sattelmacher B et al (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 111:457–465

    Article  CAS  Google Scholar 

  10. Delaunois B, Colby T, Belloy N et al (2013) Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes. BMC Plant Biol 1:24

    Article  Google Scholar 

  11. Konozy EHE, Rogniaux H, Causse M, Faurobert M (2013) Proteomic analysis of tomato (Solanum lycopersicum) secretome. J Plant Res 126:251–266

    Article  CAS  Google Scholar 

  12. Wen F, VanEtten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773

    Article  CAS  Google Scholar 

  13. Delannoy M, Alves G, Vertommen D et al (2008) Identification of peptidases in Nicotiana tabacum leaf intercellular fluid. Proteomics 8:2285–2298

    Article  CAS  Google Scholar 

  14. Soares NC, Francisco R, Ricardo CP, Jackson PA (2007) Proteomics of ionically bound and soluble extracellular proteins in Medicago truncatula leaves. Proteomics 7:2070–2082

    Article  CAS  Google Scholar 

  15. Witzel K, Shahzad M, Matros A et al (2011) Comparative evaluation of extraction methods for apoplastic proteins from maize leaves. Plant Methods 7(1):48

    Article  CAS  Google Scholar 

  16. Agrawal GK, Jwa N-S, Lebrun M-H et al (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10:799–827

    Article  CAS  Google Scholar 

  17. Casasoli M, Spadoni S, Lilley KS et al (2008) Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in Arabidopsis thaliana. Proteomics 8:1042–1054

    Article  CAS  Google Scholar 

  18. Wang Y, Kim SG, Wu J et al (2014) Differential proteome and secretome analysis during rice-pathogen interaction. Methods Mol Biol 1072:563–572

    Article  CAS  Google Scholar 

  19. Zhou F, Kurth J, Wei F et al (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13(2):337–350

    Article  CAS  Google Scholar 

  20. Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 9(3):341–356. https://doi.org/10.1046/j.1365-313X.1996.09030341.x

    Article  CAS  PubMed  Google Scholar 

  21. Barbez E, Dünser K, Gaidora A et al (2017) Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 114(24):E4884–E4893. https://doi.org/10.1073/pnas.1613499114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sehrawat A, Deswal R (2014) S-nitrosylation analysis in Brassica juncea apoplast highlights the importance of nitric oxide in cold-stress signaling. J Proteome Res 13(5):2599–2619. https://doi.org/10.1021/pr500082u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Education, Culture, Sports, Science, and Technology of Japan Grants-in-Aid for Scientific Research to T. Uemura (No. 15H04627), by the Asahi Glass Foundation to T. Uemura, by the Max Planck Society to P.S.-L. and H. N., and by the “Cluster of Excellence on Plant Sciences (CEPLAS)” program funded by the Deutsche Forschungsgemeinschaft (DFG) to P.S.-L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryohei Thomas Nakano or Hirofumi Nakagami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakano, R.T. et al. (2020). Apoplastic Fluid Preparation from Arabidopsis thaliana Leaves Upon Interaction with a Nonadapted Powdery Mildew Pathogen. In: Jorrin-Novo, J., Valledor, L., Castillejo, M., Rey, MD. (eds) Plant Proteomics. Methods in Molecular Biology, vol 2139. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0528-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0528-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0527-1

  • Online ISBN: 978-1-0716-0528-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics