Skip to main content

Predicting Conformational Properties of Intrinsically Disordered Proteins from Sequence

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Intrinsically disordered proteins (IDPs) can adopt a range of conformations from globules to swollen coils. This large range of conformational preferences for different IDPs raises the question of how conformational preferences are encoded by sequence. Global compositional features of a sequence such as the fraction of charged residues and the net charge per residue engender certain conformational biases. However, more specific sequence features such as the patterning of oppositely charged residues, expansion driving residues, or residues that can undergo posttranslational modifications can also influence the conformational ensembles of an IDP. Here, we outline how to calculate important global compositional features and patterning metrics that can be used to classify IDPs into different conformational classes and predict relative changes in conformation for sequences with the same amino acid composition. Although increased effort has been devoted to determining conformational properties of IDPs in recent years, quantitative predictions of conformation directly from sequence remain difficult and often inaccurate. Thus, if quantitative predictions of conformational properties are desired, then sequence-specific simulations must be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331. https://doi.org/10.1006/jmbi.1999.3110

    Article  CAS  PubMed  Google Scholar 

  2. van der Lee R, Buljan M, Lang B et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631. https://doi.org/10.1021/cr400525m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16(1):18–29. https://doi.org/10.1038/nrm3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fung HYJ, Birol M, Rhoades E (2018) IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr Opin Struct Biol 49:36–43. https://doi.org/10.1016/j.sbi.2017.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Snead D, Eliezer D (2019) Intrinsically disordered proteins in synaptic vesicle trafficking and release. J Biol Chem 294(10):3325–3342. https://doi.org/10.1074/jbc.REV118.006493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song J, Gomes GN, Shi T et al (2017) Conformational heterogeneity and FRET data interpretation for dimensions of unfolded proteins. Biophys J 113(5):1012–1024. https://doi.org/10.1016/j.bpj.2017.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fuertes G, Banterle N, Ruff KM et al (2017) Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342–E6351. https://doi.org/10.1073/pnas.1704692114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crick SL, Jayaraman M, Frieden C et al (2006) Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc Natl Acad Sci U S A 103(45):16764–16769. https://doi.org/10.1073/pnas.0608175103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holehouse AS, Garai K, Lyle N et al (2015) Quantitative assessments of the distinct contributions of polypeptide backbone amides versus side chain groups to chain expansion via chemical denaturation. J Am Chem Soc 137(8):2984–2995. https://doi.org/10.1021/ja512062h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mao AH, Crick SL, Vitalis A et al (2010) Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc Natl Acad Sci U S A 107(18):8183–8188. https://doi.org/10.1073/pnas.0911107107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muller-Spath S, Soranno A, Hirschfeld V et al (2010) From the cover: charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci U S A 107(33):14609–14614. https://doi.org/10.1073/pnas.1001743107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Marsh JA, Forman-Kay JD (2010) Sequence determinants of compaction in intrinsically disordered proteins. Biophys J 98(10):2383–2390. https://doi.org/10.1016/j.bpj.2010.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uversky VN, Gillespie JR, Fink AL (2000) Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 41(3):415–427

    Article  CAS  PubMed  Google Scholar 

  14. Das RK, Ruff KM, Pappu RV (2015) Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr Opin Struct Biol 32:102–112. https://doi.org/10.1016/j.sbi.2015.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Das RK, Pappu RV (2013) Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci U S A 110(33):13392–13397. https://doi.org/10.1073/pnas.1304749110

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mao AH, Lyle N, Pappu RV (2013) Describing sequence-ensemble relationships for intrinsically disordered proteins. Biochem J 449(2):307–318. https://doi.org/10.1042/BJ20121346

    Article  CAS  PubMed  Google Scholar 

  17. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford; New York

    Google Scholar 

  18. Flory PJ (1969) Statistical mechanics of chain molecules. Interscience Publishers, New York

    Book  Google Scholar 

  19. Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228. https://doi.org/10.1016/S0140-6736(07)60111-1

    Article  CAS  PubMed  Google Scholar 

  20. Newcombe EA, Ruff KM, Sethi A et al (2018) Tadpole-like conformations of Huntingtin exon 1 are characterized by conformational heterogeneity that persists regardless of Polyglutamine length. J Mol Biol 430(10):1442–1458. https://doi.org/10.1016/j.jmb.2018.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lyle N, Das RK, Pappu RV (2013) A quantitative measure for protein conformational heterogeneity. J Chem Phys 139(12):121907. https://doi.org/10.1063/1.4812791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Das RK, Huang Y, Phillips AH et al (2016) Cryptic sequence features within the disordered protein p27Kip1 regulate cell cycle signaling. Proc Natl Acad Sci U S A 113(20):5616–5621. https://doi.org/10.1073/pnas.1516277113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buske PJ, Mittal A, Pappu RV et al (2015) An intrinsically disordered linker plays a critical role in bacterial cell division. Semin Cell Dev Biol 37:3–10. https://doi.org/10.1016/j.semcdb.2014.09.017

    Article  CAS  PubMed  Google Scholar 

  24. Rees M, Gorba C, de Chiara C et al (2012) Solution model of the intrinsically disordered polyglutamine tract-binding protein-1. Biophys J 102(7):1608–1616. https://doi.org/10.1016/j.bpj.2012.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takahashi M, Mizuguchi M, Shinoda H et al (2009) Polyglutamine tract binding protein-1 is an intrinsically unstructured protein. Biochim Biophys Acta 1794(6):936–943. https://doi.org/10.1016/j.bbapap.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  26. Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8(9):227. https://doi.org/10.1186/gb-2007-8-9-227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borgia A, Borgia MB, Bugge K et al (2018) Extreme disorder in an ultrahigh-affinity protein complex. Nature 555(7694):61–66. https://doi.org/10.1038/nature25762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Auton M, Bolen DW (2007) Application of the transfer model to understand how naturally occurring osmolytes affect protein stability. Methods Enzymol 428:397–418. https://doi.org/10.1016/S0076-6879(07)28023-1

    Article  CAS  PubMed  Google Scholar 

  29. Uversky VN (2017) How to predict disorder in a protein of interest. Methods Mol Biol 1484:137–158. https://doi.org/10.1007/978-1-4939-6406-2_11

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen JT, Mulder FAA (2019) Quality and bias of protein disorder predictors. Sci Rep 9(1):5137. https://doi.org/10.1038/s41598-019-41644-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. UniProt C (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  32. Dosztanyi Z (2018) Prediction of protein disorder based on IUPred. Protein Sci 27(1):331–340. https://doi.org/10.1002/pro.3334

    Article  CAS  PubMed  Google Scholar 

  33. Meszaros B, Erdos G, Dosztanyi Z (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46(W1):W329–W337. https://doi.org/10.1093/nar/gky384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dosztanyi Z, Csizmok V, Tompa P et al (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347(4):827–839. https://doi.org/10.1016/j.jmb.2005.01.071

    Article  CAS  PubMed  Google Scholar 

  35. Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5(5):e1000376. https://doi.org/10.1371/journal.pcbi.1000376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Romero O, Dunker K (1997) Sequence data analysis for long disordered regions prediction in the Calcineurin family. Genome Inform Ser Workshop Genome Inform 8:110–124

    CAS  PubMed  Google Scholar 

  37. Li X, Obradovic Z, Brown CJ et al (2000) Comparing predictors of disordered protein. Genome Inform Ser Workshop Genome Inform 11:172–184

    CAS  PubMed  Google Scholar 

  38. Li X, Romero P, Rani M et al (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10:30–40

    CAS  PubMed  Google Scholar 

  39. Garner E, Romero P, Dunker AK et al (1999) Predicting binding regions within disordered proteins. Genome Inform Ser Workshop Genome Inform 10:41–50

    CAS  PubMed  Google Scholar 

  40. Romero P, Obradovic Z, Li X et al (2001) Sequence complexity of disordered protein. Proteins 42(1):38–48

    Article  CAS  PubMed  Google Scholar 

  41. Vucetic S, Brown CJ, Dunker AK et al (2003) Flavors of protein disorder. Proteins 52(4):573–584. https://doi.org/10.1002/prot.10437

    Article  CAS  PubMed  Google Scholar 

  42. Radivojac P, Obradovic Z, Brown CJ et al (2003) Prediction of boundaries between intrinsically ordered and disordered protein regions. Pac Symp Biocomput:216–227

    Google Scholar 

  43. Obradovic Z, Peng K, Vucetic S et al (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53(Suppl 6):566–572. https://doi.org/10.1002/prot.10532

    Article  CAS  PubMed  Google Scholar 

  44. Piovesan D, Tabaro F, Paladin L et al (2018) MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res 46(D1):D471–D476. https://doi.org/10.1093/nar/gkx1071

    Article  CAS  PubMed  Google Scholar 

  45. Piovesan D, Tabaro F, Micetic I et al (2017) DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res 45(D1):D219–D227. https://doi.org/10.1093/nar/gkw1056

    Article  CAS  PubMed  Google Scholar 

  46. Holehouse AS, Das RK, Ahad JN et al (2017) CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys J 112(1):16–21. https://doi.org/10.1016/j.bpj.2016.11.3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  PubMed  Google Scholar 

  48. Xu D, Nussinov R (1998) Favorable domain size in proteins. Fold Des 3(1):11–17. https://doi.org/10.1016/S1359-0278(98)00004-2

    Article  CAS  PubMed  Google Scholar 

  49. Sherry KP, Das RK, Pappu RV et al (2017) Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the notch receptor. Proc Natl Acad Sci U S A 114(44):E9243–E9252. https://doi.org/10.1073/pnas.1706083114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sawle L, Ghosh K (2015) A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J Chem Phys 143(8):085101. https://doi.org/10.1063/1.4929391

    Article  CAS  PubMed  Google Scholar 

  51. Lin YH, Chan HS (2017) Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys J 112(10):2043–2046. https://doi.org/10.1016/j.bpj.2017.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tedeschi G, Salladini E, Santambrogio C et al (2018) Conformational response to charge clustering in synthetic intrinsically disordered proteins. Biochim Biophys Acta Gen Subj 1862(10):2204–2214. https://doi.org/10.1016/j.bbagen.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  53. Martin EW, Holehouse AS, Grace CR et al (2016) Sequence determinants of the conformational properties of an intrinsically disordered protein prior to and upon multisite phosphorylation. J Am Chem Soc 138(47):15323–15335. https://doi.org/10.1021/jacs.6b10272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Firman T, Ghosh K (2018) Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins. J Chem Phys 148(12):123305. https://doi.org/10.1063/1.5005821

    Article  CAS  PubMed  Google Scholar 

  55. Tomasso ME, Tarver MJ, Devarajan D et al (2016) Hydrodynamic radii of intrinsically disordered proteins determined from experimental Polyproline II propensities. PLoS Comput Biol 12(1):e1004686. https://doi.org/10.1371/journal.pcbi.1004686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harmon TS, Holehouse AS, Rosen MK et al (2017) Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife 6. https://doi.org/10.7554/eLife.30294

  57. Samanta HS, Chakraborty D, Thirumalai D (2018) Charge fluctuation effects on the shape of flexible polyampholytes with applications to intrinsically disordered proteins. J Chem Phys 149(16):163323. https://doi.org/10.1063/1.5035428

    Article  CAS  PubMed  Google Scholar 

  58. Zerze GH, Zheng W, Best RB et al (2019) Evolution of all-atom protein force fields to improve local and global properties. J Phys Chem Lett 10:2227–2234. https://doi.org/10.1021/acs.jpclett.9b00850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choi JM, Pappu RV (2019) Improvements to the ABSINTH force field for proteins based on experimentally derived amino acid specific backbone conformational statistics. J Chem Theory Comput 15(2):1367–1382. https://doi.org/10.1021/acs.jctc.8b00573

    Article  CAS  PubMed  Google Scholar 

  60. Vitalis A, Pappu RV (2009) ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions. J Comput Chem 30(5):673–699. https://doi.org/10.1002/jcc.21005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Robustelli P, Piana S, Shaw DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci U S A 115(21):E4758–E4766. https://doi.org/10.1073/pnas.1800690115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baul U, Chakraborty D, Mugnai ML et al (2019) Sequence effects on size, shape, and structural heterogeneity in intrinsically disordered proteins. J Phys Chem B 123(16):3462–3474. https://doi.org/10.1021/acs.jpcb.9b02575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dignon GL, Zheng W, Kim YC et al (2018) Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput Biol 14(1):e1005941. https://doi.org/10.1371/journal.pcbi.1005941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Best RB (2017) Computational and theoretical advances in studies of intrinsically disordered proteins. Curr Opin Struct Biol 42:147–154. https://doi.org/10.1016/j.sbi.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  65. MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218(2):397–412

    Article  CAS  PubMed  Google Scholar 

  66. Nettels D, Muller-Spath S, Kuster F et al (2009) Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc Natl Acad Sci U S A 106(49):20740–20745. https://doi.org/10.1073/pnas.0900622106

    Article  PubMed  PubMed Central  Google Scholar 

  67. Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 24:98–105. https://doi.org/10.1016/j.sbi.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  68. Yamada J, Phillips JL, Patel S et al (2010) A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 9(10):2205–2224. https://doi.org/10.1074/mcp.M000035-MCP201

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kapinos LE, Schoch RL, Wagner RS et al (2014) Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys J 106(8):1751–1762. https://doi.org/10.1016/j.bpj.2014.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Denning DP, Uversky V, Patel SS et al (2002) The Saccharomyces cerevisiae nucleoporin Nup2p is a natively unfolded protein. J Biol Chem 277(36):33447–33455. https://doi.org/10.1074/jbc.M203499200

    Article  CAS  PubMed  Google Scholar 

  71. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269(1):2–12

    Article  CAS  PubMed  Google Scholar 

  72. Leyrat C, Jensen MR, Ribeiro EA et al (2011) The N(0)-binding region of the vesicular stomatitis virus phosphoprotein is globally disordered but contains transient alpha-helices. Protein Sci 20(3):542–556. https://doi.org/10.1002/pro.587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marsh JA, Dancheck B, Ragusa MJ et al (2010) Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 18(9):1094–1103. https://doi.org/10.1016/j.str.2010.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mittag T, Marsh J, Grishaev A et al (2010) Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18(4):494–506. https://doi.org/10.1016/j.str.2010.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Launay H, Barre P, Puppo C et al (2018) Cryptic disorder out of disorder: encounter between conditionally disordered CP12 and Glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol 430(8):1218–1234. https://doi.org/10.1016/j.jmb.2018.02.020

    Article  CAS  PubMed  Google Scholar 

  76. Johansen D, Trewhella J, Goldenberg DP (2011) Fractal dimension of an intrinsically disordered protein: small-angle X-ray scattering and computational study of the bacteriophage lambda N protein. Protein Sci 20(12):1955–1970. https://doi.org/10.1002/pro.739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Boze H, Marlin T, Durand D et al (2010) Proline-rich salivary proteins have extended conformations. Biophys J 99(2):656–665. https://doi.org/10.1016/j.bpj.2010.04.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Riback JA, Bowman MA, Zmyslowski AM et al (2017) Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358(6360):238–241. https://doi.org/10.1126/science.aan5774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moncoq K, Broutin I, Craescu CT et al (2004) SAXS study of the PIR domain from the Grb14 molecular adaptor: a natively unfolded protein with a transient structure primer? Biophys J 87(6):4056–4064. https://doi.org/10.1529/biophysj.104.048645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gibbs EB, Lu F, Portz B et al (2017) Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain. Nat Commun 8:15233. https://doi.org/10.1038/ncomms15233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Portz B, Lu F, Gibbs EB et al (2017) Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain. Nat Commun 8:15231. https://doi.org/10.1038/ncomms15231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Borgia A, Zheng W, Buholzer K et al (2016) Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. J Am Chem Soc 138(36):11714–11726. https://doi.org/10.1021/jacs.6b05917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shell SS, Putnam CD, Kolodner RD (2007) The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA. Mol Cell 26(4):565–578. https://doi.org/10.1016/j.molcel.2007.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nairn KM, Lyons RE, Mulder RJ et al (2008) A synthetic resilin is largely unstructured. Biophys J 95(7):3358–3365. https://doi.org/10.1529/biophysj.107.119107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gazi AD, Bastaki M, Charova SN et al (2008) Evidence for a coiled-coil interaction mode of disordered proteins from bacterial type III secretion systems. J Biol Chem 283(49):34062–34068. https://doi.org/10.1074/jbc.M803408200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Uversky VN, Li J, Souillac P et al (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277(14):11970–11978. https://doi.org/10.1074/jbc.M109541200

    Article  CAS  PubMed  Google Scholar 

  87. Longhi S, Receveur-Brechot V, Karlin D et al (2003) The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278(20):18638–18648. https://doi.org/10.1074/jbc.M300518200

    Article  CAS  PubMed  Google Scholar 

  88. Lens Z, Dewitte F, Monte D et al (2010) Solution structure of the N-terminal transactivation domain of ERM modified by SUMO-1. Biochem Biophys Res Commun 399(1):104–110. https://doi.org/10.1016/j.bbrc.2010.07.049

    Article  CAS  PubMed  Google Scholar 

  89. Paz A, Zeev-Ben-Mordehai T, Lundqvist M et al (2008) Biophysical characterization of the unstructured cytoplasmic domain of the human neuronal adhesion protein neuroligin 3. Biophys J 95(4):1928–1944. https://doi.org/10.1529/biophysj.107.126995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gosselin P, Oulhen N, Jam M et al (2011) The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS. Nucleic Acids Res 39(8):3496–3503. https://doi.org/10.1093/nar/gkq1306

    Article  CAS  PubMed  Google Scholar 

  91. Uversky VN, Gillespie JR, Millett IS et al (1999) Natively unfolded human prothymosin alpha adopts partially folded collapsed conformation at acidic pH. Biochemistry 38(45):15009–15016

    Article  CAS  PubMed  Google Scholar 

  92. Alborghetti MR, Furlan AS, Silva JC et al (2010) Human FEZ1 protein forms a disulfide bond mediated dimer: implications for cargo transport. J Proteome Res 9(9):4595–4603. https://doi.org/10.1021/pr100314q

    Article  CAS  PubMed  Google Scholar 

  93. Foucault M, Mayol K, Receveur-Brechot V et al (2010) UV and X-ray structural studies of a 101-residue long tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate. Proteins 78(6):1441–1456. https://doi.org/10.1002/prot.22661

    Article  CAS  PubMed  Google Scholar 

  94. Wells M, Tidow H, Rutherford TJ et al (2008) Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc Natl Acad Sci U S A 105(15):5762–5767. https://doi.org/10.1073/pnas.0801353105

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mylonas E, Hascher A, Bernado P et al (2008) Domain conformation of tau protein studied by solution small-angle X-ray scattering. Biochemistry 47(39):10345–10353. https://doi.org/10.1021/bi800900d

    Article  CAS  PubMed  Google Scholar 

  96. Cragnell C, Durand D, Cabane B et al (2016) Coarse-grained modeling of the intrinsically disordered protein Histatin 5 in solution: Monte Carlo simulations in combination with SAXS. Proteins 84(6):777–791. https://doi.org/10.1002/prot.25025

    Article  CAS  PubMed  Google Scholar 

  97. Li X, Tao Y, Murphy JW et al (2017) The repeat region of cortactin is intrinsically disordered in solution. Sci Rep 7(1):16696. https://doi.org/10.1038/s41598-017-16959-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mercadante D, Milles S, Fuertes G et al (2015) Kirkwood-buff approach rescues Overcollapse of a disordered protein in canonical protein force fields. J Phys Chem B 119(25):7975–7984. https://doi.org/10.1021/acs.jpcb.5b03440

    Article  CAS  PubMed  Google Scholar 

  99. Vallet SD, Miele AE, Uciechowska-Kaczmarzyk U et al (2018) Insights into the structure and dynamics of lysyl oxidase propeptide, a flexible protein with numerous partners. Sci Rep 8(1):11768. https://doi.org/10.1038/s41598-018-30190-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Roque A, Ponte I, Suau P (2007) Macromolecular crowding induces a molten globule state in the C-terminal domain of histone H1. Biophys J 93(6):2170–2177. https://doi.org/10.1529/biophysj.107.104513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bressan GC, Silva JC, Borges JC et al (2008) Human regulatory protein Ki-1/57 has characteristics of an intrinsically unstructured protein. J Proteome Res 7(10):4465–4474. https://doi.org/10.1021/pr8005342

    Article  CAS  PubMed  Google Scholar 

  102. Marasini C, Galeno L, Moran O (2013) A SAXS-based ensemble model of the native and phosphorylated regulatory domain of the CFTR. Cell Mol Life Sci 70(5):923–933. https://doi.org/10.1007/s00018-012-1172-5

    Article  CAS  PubMed  Google Scholar 

  103. Kjaergaard M, Norholm AB, Hendus-Altenburger R et al (2010) Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II? Protein Sci 19(8):1555–1564. https://doi.org/10.1002/pro.435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Majava V, Wang C, Myllykoski M et al (2010) Structural analysis of the complex between calmodulin and full-length myelin basic protein, an intrinsically disordered molecule. Amino Acids 39(1):59–71. https://doi.org/10.1007/s00726-009-0364-2

    Article  CAS  PubMed  Google Scholar 

  105. Renner M, Paesen GC, Grison CM et al (2017) Structural dissection of human metapneumovirus phosphoprotein using small angle X-ray scattering. Sci Rep 7(1):14865. https://doi.org/10.1038/s41598-017-14448-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gates ZP, Baxa MC, Yu W et al (2017) Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core. Proc Natl Acad Sci U S A 114(9):2241–2246. https://doi.org/10.1073/pnas.1609579114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Konno T, Tanaka N, Kataoka M et al (1997) A circular dichroism study of preferential hydration and alcohol effects on a denatured protein, pig calpastatin domain I. Biochim Biophys Acta 1342(1):73–82. https://doi.org/10.1016/s0167-4838(97)00092-7

    Article  CAS  PubMed  Google Scholar 

  108. Kulkarni P, Jolly MK, Jia D et al (2017) Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Proc Natl Acad Sci U S A 114(13):E2644–E2653. https://doi.org/10.1073/pnas.1700082114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Peng Y, Cao S, Kiselar J et al (2019) A metastable contact and structural disorder in the Estrogen receptor transactivation domain. Structure 27(2):229–240. https://doi.org/10.1016/j.str.2018.10.026

    Article  CAS  PubMed  Google Scholar 

  110. Watanabe-Matsui M, Matsumoto T, Matsui T et al (2015) Heme binds to an intrinsically disordered region of Bach2 and alters its conformation. Arch Biochem Biophys 565:25–31. https://doi.org/10.1016/j.abb.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  111. Permyakov SE, Millett IS, Doniach S et al (2003) Natively unfolded C-terminal domain of caldesmon remains substantially unstructured after the effective binding to calmodulin. Proteins 53(4):855–862. https://doi.org/10.1002/prot.10481

    Article  CAS  PubMed  Google Scholar 

  112. Yabukarski F, Lawrence P, Tarbouriech N et al (2014) Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone. Nat Struct Mol Biol 21(9):754–759. https://doi.org/10.1038/nsmb.2868

    Article  CAS  PubMed  Google Scholar 

  113. Hibino E, Inoue R, Sugiyama M et al (2016) Interaction between intrinsically disordered regions in transcription factors Sp1 and TAF4. Protein Sci 25(11):2006–2017. https://doi.org/10.1002/pro.3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Alex S. Holehouse and Garrett Ginell for collating much of the small-angle X-ray scattering data shown in Table 3. I am also grateful to Rohit V. Pappu, Alex S. Holehouse, Megan C. Cohan, and Martin J. Fossat, as well as other members of the Pappu lab, for their many helpful discussions. I also thank Rahul K. Das, Alex S. Holehouse, and Tyler S. Harmon for use of their simulation results. This work was supported by the National Institutes of Health (grant 5R01NS056114 to Dr. Rohit V. Pappu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiersten M. Ruff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruff, K.M. (2020). Predicting Conformational Properties of Intrinsically Disordered Proteins from Sequence. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics