Skip to main content

Obtaining Hydrodynamic Radii of Intrinsically Disordered Protein Ensembles by Pulsed Field Gradient NMR Measurements

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

In the disordered state, a protein exhibits a high degree of structural freedom, in both space and time. For an ensemble of disordered or unfolded proteins, this means that the ensemble comprises a high diversity of structures, ranging from compact collapsed states to fully extended polypeptide chains. In addition, each chain is highly dynamic and undergoes conformational changes and local dynamics on both fast and slow timescales. The size properties of disordered proteins are thus best described as ensemble averages. A straightforward measure of the size is the hydrodynamic radius, RH, of the ensemble. Since the disordered state is conformationally fluid, the observed RH does not refer to a particular shape or fold. Instead, it should be interpreted as a measure for the average compaction of the structural ensemble. In addition to characterizing the disordered ensemble itself, RH can be used to, with good precision, monitor changes in the ensemble size properties upon functional interactions of the disordered protein, e.g., dimerization, ligand binding, and folding pathways. Here, we present a step-by-step protocol for diffusion measurements using pulsed field gradient nuclear magnetic resonance (PFG NMR) spectroscopy. We describe how to calibrate the magnetic field gradient and offer different schemes for sample preparation. Finally, we describe how to obtain RH directly from the diffusion coefficient as well as from using an internal standard as a reference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331. https://doi.org/10.1006/jmbi.1999.3110

    Article  CAS  Google Scholar 

  2. Marsh JA, Forman-Kay JD (2012) Ensemble modeling of protein disordered states: experimental restraint contributions and validation. Proteins 80(2):556–572. https://doi.org/10.1002/prot.23220

    Article  CAS  PubMed  Google Scholar 

  3. Kohn JE, Millett IS, Jacob J et al (2004) Random-coil behavior and the dimensions of chemically unfolded proteins. Proc Natl Acad Sci U S A 101(34):12491–12496. https://doi.org/10.1073/pnas.0403643101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schneider R, Huang JR, Yao M et al (2012) Towards a robust description of intrinsic protein disorder using nuclear magnetic resonance spectroscopy. Mol BioSyst 8(1):58–68. https://doi.org/10.1039/c1mb05291h

    Article  CAS  PubMed  Google Scholar 

  5. Flory PJ (1953) Principles of polymer chemistry. Cornell Univ. Press, Ithaca, NY

    Google Scholar 

  6. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell Univ. Press, Ithaca, NY

    Google Scholar 

  7. Danielsson J, Jarvet J, Damberg P et al (2002) Translational diffusion measured by PFG-NMR on full length and fragments of the Alzheimer a beta(1-40) peptide. Determination of hydrodynamic radii of random coil peptides of varying length. Magn Reson Chem 40:S89–S97. https://doi.org/10.1002/mrc.1132

    Article  CAS  Google Scholar 

  8. Hofmann H, Soranno A, Borgia A et al (2012) Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proc Natl Acad Sci U S A 109(40):16155–16160. https://doi.org/10.1073/pnas.1207719109

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wilkins DK, Grimshaw SB, Receveur V et al (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry 38(50):16424–16431. https://doi.org/10.1021/bi991765q

    Article  CAS  PubMed  Google Scholar 

  10. Ozenne V, Noel JK, Heidarsson PO et al (2014) Exploring the minimally frustrated energy landscape of unfolded ACBP. J Mol Biol 426(3):722–734. https://doi.org/10.1016/j.jmb.2013.10.031

    Article  CAS  PubMed  Google Scholar 

  11. Marsh JA, Forman-Kay JD (2010) Sequence determinants of compaction in intrinsically disordered proteins. Biophys J 98(10):2383–2390. https://doi.org/10.1016/j.bpj.2010.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grosberg AY, Kuznetsov DV (1992) Quantitative theory of the globule-to-coil transition .4. Comparison of theoretical results with experimental-data. Macromolecules 25(7):1996–2003. https://doi.org/10.1021/ma00033a025

    Article  CAS  Google Scholar 

  13. Nygaard M, Kragelund BB, Papaleo E et al (2017) An efficient method for estimating the hydrodynamic radius of disordered protein conformations. Biophys J 113(3):550–557. https://doi.org/10.1016/j.bpj.2017.06.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindorff-Larsen K, Kristjansdottir S, Teilum K et al (2004) Determination of an ensemble of structures representing the denatured state of the bovine acyl-coenzyme a binding protein. J Am Chem Soc 126(10):3291–3299. https://doi.org/10.1021/ja039250g

    Article  CAS  PubMed  Google Scholar 

  15. Penkett CJ, Redfield C, Dodd I et al (1997) NMR analysis of main-chain conformational preferences in an unfolded fibronectin-binding protein. J Mol Biol 274(2):152–159. https://doi.org/10.1006/jmbi.1997.1369

    Article  CAS  PubMed  Google Scholar 

  16. Jones JA, Wilkins DK, Smith LJ et al (1997) Characterisation of protein unfolding by NMR diffusion measurements. J Biomol NMR 10(2):199–203. https://doi.org/10.1023/A:1018304117895

    Article  CAS  Google Scholar 

  17. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322(8):549–560

    Article  Google Scholar 

  18. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292. https://doi.org/10.1063/1.1695690

    Article  CAS  Google Scholar 

  19. Roding M, Nyden M (2015) Stejskal-tanner equation for three asymmetrical gradient pulse shapes used in diffusion NMR. Concept Magn Reson A 44(3):133–137. https://doi.org/10.1002/cmr.a.21338

    Article  CAS  Google Scholar 

  20. Wu D, Chen AD, Johnson CS (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson Ser A 115:260–264. https://doi.org/10.1006/jmra.1995.1176

    Article  CAS  Google Scholar 

  21. Chan SHS, Waudby CA, Cassaignau AME et al (2015) Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome-nascent chain complexes. J Biomol NMR 63(2):151–163. https://doi.org/10.1007/s10858-015-9968-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kärger J, Stallmach F (2005) PFG NMR studies of anomalous diffusion. In: Diffusion in condensed matter. Springer, Berlin, Heidelberg. https://doi.org/10.1063/1.1673336

  23. Kuttner YY, Kozer N, Segal E et al (2005) Separating the contribution of translational and rotational diffusion to protein association. J Am Chem Soc 127(43):15138–15144. https://doi.org/10.1021/ja053681c

    Article  CAS  PubMed  Google Scholar 

  24. Dix JA, Verkman AS (2008) Crowding effects on diffusion in solutions and cells. Annu Rev Biophys 37:247–263. https://doi.org/10.1146/annurev.biophys.37.032807.125824

    Article  CAS  PubMed  Google Scholar 

  25. Danielsson J, Liljedahl L, Barany-Wallje E et al (2008) The intrinsically disordered RNR inhibitor Sml1 is a dynamic dimer. Biochemistry 47(50):13428–13437. https://doi.org/10.1021/bi801040b

    Article  CAS  PubMed  Google Scholar 

  26. Danielsson J, Jarvet J, Damberg P et al (2004) Two-site binding of beta-cyclodextrin to the Alzheimer Abeta(1-40) peptide measured with combined PFG-NMR diffusion and induced chemical shifts. Biochemistry 43(20):6261–6269. https://doi.org/10.1021/bi036254p

    Article  CAS  PubMed  Google Scholar 

  27. Abelein A, Graslund A, Danielsson J (2015) Zinc as chaperone-mimicking agent for retardation of amyloid beta peptide fibril formation. Proc Natl Acad Sci U S A 112(17):5407–5412. https://doi.org/10.1073/pnas.1421961112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hrovat MI, Wade CG (1981) Nmr pulsed-gradient diffusion measurements .1. Spin-Echo stability and gradient calibration. J Magn Reson 44(1):62–75. https://doi.org/10.1016/0022-2364(81)90189-X

    Article  CAS  Google Scholar 

  29. Damberg P, Jarvet J, Graslund A (2001) Accurate measurement of translational diffusion coefficients: a practical method to account for nonlinear gradients. J Magn Reson 148(2):343–348. https://doi.org/10.1006/jmre.2000.2260

    Article  CAS  PubMed  Google Scholar 

  30. Findeisen M, Brand T, Berger S (2007) A 1H-NMR thermometer suitable for cryoprobes. Magn Reson Chem 45(2):175–178. https://doi.org/10.1002/mrc.1941

    Article  CAS  PubMed  Google Scholar 

  31. Loening NM, Keeler J (1999) Measurement of convection and temperature profiles in liquid samples. J Magn Reson 139(2):334–341. https://doi.org/10.1006/jmre.1999.1777

    Article  CAS  PubMed  Google Scholar 

  32. Tanner JE (1970) Use of the stimulated Echo in NMR diffusion studies. J Chem Phys 52(5):2523–2526. https://doi.org/10.1063/1.1673336

  33. Danielsson J, Andersson A, Jarvet J et al (2006) 15N relaxation study of the amyloid beta-peptide: structural propensities and persistence length. Magn Reson Chem 44:S114–S121. https://doi.org/10.1002/mrc.1814

    Article  CAS  PubMed  Google Scholar 

  34. Cho CH, Urquidi J, Singh S et al (1999) Thermal offset viscosities of liquid H2O, D2O, and T2O. J Phys Chem B 103(11):1991–1994. https://doi.org/10.1021/jp9842953

    Article  CAS  Google Scholar 

  35. Ming LJ, Valentine JS (2014) Insights into SOD1-linked amyotrophic lateral sclerosis from NMR studies of Ni(2+)- and other metal-ion-substituted wild-type copper-zinc superoxide dismutases. J Biol Inorg Chem 19(4-5):647–657. https://doi.org/10.1007/s00775-014-1126-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong A, Prestrelski SJ, Allison SD et al (1995) Infrared spectroscopic studies of lyophilization- and temperature-induced protein aggregation. J Pharm Sci 84(4):415–424. https://doi.org/10.1002/jps.2600840407

  37. Wang CK, Northfield SE, Swedberg JE et al (2014) Translational diffusion of cyclic peptides measured using pulsed-field gradient NMR. J Phys Chem B 118(38):11129–11136. https://doi.org/10.1021/jp506678f

    Article  CAS  PubMed  Google Scholar 

  38. Danielsson J, Kurnik M, Lang L et al (2011) Cutting off functional loops from homodimeric enzyme superoxide dismutase 1 (SOD1) leaves monomeric beta-barrels. J Biol Chem 286(38):33070–33083. https://doi.org/10.1074/jbc.M111.251223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the Knut and Alice Wallenberg Foundation (2017-0041), the Swedish Research Council (2017-01517), and the Magnus Bergvall Foundation (2017-02228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Danielsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leeb, S., Danielsson, J. (2020). Obtaining Hydrodynamic Radii of Intrinsically Disordered Protein Ensembles by Pulsed Field Gradient NMR Measurements. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics