Skip to main content

High-Throughput MHC I Ligand Prediction Using MHCflurry

  • Protocol
  • First Online:
Bioinformatics for Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2120))

Abstract

MHCflurry is an open source package for peptide/MHC I binding affinity prediction. Its command-line and programmatic interfaces make it well-suited for integration into high-throughput bioinformatic pipelines. Users can download models fit to publicly available data or train predictors on their own affinity measurements or mass spec datasets. This chapter gives a tutorial on essential MHCflurry functionality, including generating predictions, training new models, and using the MHCflurry Python interface. MHCflurry is available at https://github.com/openvax/mhcflurry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Donnell TJ, Rubinsteyn A, Bonsack M et al (2018) MHCflurry: open-source class I MHC binding affinity prediction. Cell Syst 7:129–132.e4

    Article  Google Scholar 

  2. Jurtz V, Paul S, Andreatta M et al (2017) NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199:3360–3368

    Article  CAS  Google Scholar 

  3. Chollet F, Others (2015), Keras. https://github.com/keras-team/keras

  4. Abadi M, Agarwal A, Barham P, et al (2016) TensorFlow: large-scale machine learning on heterogeneous distributed systems. http://arxiv.org/abs/1603.04467

  5. Al-Rfou R, Alain G, Almahairi A, et al (2016) Theano: a Python framework for fast computation of mathematical expressions

    Google Scholar 

  6. Marsh SGE, Albert ED, Bodmer WF et al (2010) Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75:291–455

    Article  CAS  Google Scholar 

  7. Creech AL, Ting YS, Goulding SP et al (2018) The role of mass spectrometry and proteogenomics in the advancement of HLA epitope prediction. Proteomics 1700259:1–10

    Google Scholar 

  8. Vita R, Mahajan S, Overton JA et al (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343

    Article  CAS  Google Scholar 

  9. Kim Y, Sidney J, Buus S et al (2014) Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions. BMC Bioinformatics 15:241

    Article  Google Scholar 

  10. Shao W, Pedrioli PGA, Wolski W et al (2018) The SysteMHC atlas project. Nucleic Acids Res 46:D1237–D1247

    Article  CAS  Google Scholar 

  11. Abelin JG, Keskin DB, Sarkizova S et al (2017) Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46:315–326

    Article  CAS  Google Scholar 

  12. Sette A, Vitiello A, Reherman B et al (1994) The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 153:5586–5592

    CAS  PubMed  Google Scholar 

  13. Paul S, Weiskopf D, Angelo MA et al (2013) HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J Immunol 191:5831–5839

    Article  CAS  Google Scholar 

  14. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift

    Google Scholar 

  15. Srivastava N, Hinton GE, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy O’Donnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

O’Donnell, T., Rubinsteyn, A. (2020). High-Throughput MHC I Ligand Prediction Using MHCflurry. In: Boegel, S. (eds) Bioinformatics for Cancer Immunotherapy. Methods in Molecular Biology, vol 2120. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0327-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0327-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0326-0

  • Online ISBN: 978-1-0716-0327-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics