Skip to main content

Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach

  • Protocol
  • First Online:
Structural Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2112))

Abstract

We describe a Bayesian/Maximum entropy (BME) procedure and software to construct a conformational ensemble of a biomolecular system by integrating molecular simulations and experimental data. First, an initial conformational ensemble is constructed using, for example, Molecular Dynamics or Monte Carlo simulations. Due to potential inaccuracies in the model and finite sampling effects, properties predicted from simulations may not agree with experimental data. In BME we use the experimental data to refine the simulation so that the new conformational ensemble has the following properties: (1) the calculated averages are close to the experimental values taking uncertainty into account and (2) it maximizes the relative Shannon entropy with respect to the original simulation ensemble. The output of this procedure is a set of optimized weights that can be used to calculate other properties and distributions of these. Here, we provide a practical guide on how to obtain and use such weights, how to choose adjustable parameters and discuss shortcomings of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bottaro S, Lindorff-Larsen K (2018) Biophysical experiments and biomolecular simulations: a perfect match? Science 361(6400):355–360

    Article  CAS  PubMed  Google Scholar 

  2. Bernadó P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle x-ray scattering. J Am Chem Soc 129(17):5656–5664

    Article  PubMed  CAS  Google Scholar 

  3. Jensen MR, Communie G, Ribeiro EA, Martinez N, Desfosses A, Salmon L, Mollica L, Gabel F, Jamin M, Longhi S et al (2011) Intrinsic disorder in measles virus nucleocapsids. Proc Natl Acad Sci U S A 108(24):9839–9844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russel D, Lasker K, Webb B, Velázquez-Muriel J, Tjioe E, Schneidman-Duhovny D, Peterson B, Sali A (2012) Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol 10(1):e1001244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ward AB, Sali A, Wilson IA (2013) Integrative structural biology. Science 339(6122):913–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaalswyk K, Muniyat MI, MacCallum JL (2018) The emerging role of physical modeling in the future of structure determination. Curr Opin Struct Biol 49:145–153

    Article  CAS  PubMed  Google Scholar 

  7. Boomsma W, Ferkinghoff-Borg J, Lindorff-Larsen K (2014) Combining experiments and simulations using the maximum entropy principle. PLoS Comput Biol 10(2):e1003406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pitera JW, Chodera JD (2012) On the use of experimental observations to bias simulated ensembles. J Chem Theory Comput 8(10):3445–3451

    Article  CAS  PubMed  Google Scholar 

  9. Ángyán AF, Gáspári Z (2013) Ensemble-based interpretations of NMR structural data to describe protein internal dynamics. Molecules 18(9):10548–10567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hummer G, Köfinger J (2015) Bayesian ensemble refinement by replica simulations and reweighting. J Chem Phys 143(24):12B634_1

    Google Scholar 

  11. Bonomi M, Heller GT, Camilloni C, Vendruscolo M (2017) Principles of protein structural ensemble determination. Curr Opin Struct Biol 42:106–116

    Article  CAS  PubMed  Google Scholar 

  12. Jaynes ET (1978) Where do we stand on maximum entropy. In: The maximum entropy formalism. MIT Press, Cambridge, pp 15–118

    Google Scholar 

  13. Cesari A, Gil-Ley A, Bussi G (2016) Combining simulations and solution experiments as a paradigm for RNA force field refinement. J Chem Theory Comput 12(12):6192–6200

    Article  CAS  PubMed  Google Scholar 

  14. Bonomi M, Camilloni C, Cavalli A, Vendruscolo M (2016) Metainference: a Bayesian inference method for heterogeneous systems. Sci Adv 2(1):e1501177

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dudola D, Kovács B, Gáspári Z (2017) Consensx+ webserver for the analysis of protein structural ensembles reflecting experimentally determined internal dynamics. J Chem Inf Model 57(8):1728–1734

    Article  CAS  PubMed  Google Scholar 

  16. Reichel K, Stelzl LS, Köfinger J, Hummer G (2018) Precision deer distances from spin-label ensemble refinement. J Phys Chem Lett 9:5748–5752

    Article  CAS  PubMed  Google Scholar 

  17. Köfinger J, Stelzl LS, Reuter K, Allande C, Reichel K, Hummer G (2019) Efficient ensemble refinement by reweighting. J Chem Theory Comput 15(5):3390–3401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Rózycki B, Kim YC, Hummer G (2011) Saxs ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 19(1):109–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Boura E, Rózycki B, Herrick DZ, Chung HS, Vecer J, Eaton WA, Cafiso DS, Hummer G, Hurley JH (2011) Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy. Proc Natl Acad Sci U S A 108(23):9437–9442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bottaro S, Bussi G, Kennedy SD, Turner DH, Lindorff-Larsen K (2018) Conformational ensembles of RNA oligonucleotides from integrating nmr and molecular simulations. Sci Adv 4(5):eaar8521

    Google Scholar 

  21. Graf J, Nguyen PH, Stock G, Schwalbe H (2007) Structure and dynamics of the homologous series of alanine peptides: a joint molecular dynamics/nmr study. J Am Chem Soc 129(5):1179–1189

    Article  CAS  PubMed  Google Scholar 

  22. Beauchamp KA, Pande VS, Das R (2014) Bayesian energy landscape tilting: towards concordant models of molecular ensembles. Biophys J 106(6):1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanchez-Martinez M, Crehuet R (2014) Application of the maximum entropy principle to determine ensembles of intrinsically disordered proteins from residual dipolar couplings. Phys Chem Chem Phys 16(47):26030–26039

    Article  CAS  PubMed  Google Scholar 

  24. Salmon L, Yang S, Al-Hashimi HM (2014) Advances in the determination of nucleic acid conformational ensembles. Annu Rev Phys Chem 65:293–316

    Article  CAS  PubMed  Google Scholar 

  25. Leung HTA, Bignucolo O, Aregger R, Dames SA, Mazur A, Bernè che S, Grzesiek S (2015) A rigorous and efficient method to reweight very large conformational ensembles using average experimental data and to determine their relative information content. J Chem Theory Comput 12(1):383–394

    Google Scholar 

  26. Olsson S, Strotz D, Vögeli B, Riek R, Cavalli A (2016) The dynamic basis for signal propagation in human pin1-ww. Structure 24(9):1464–1475

    Article  CAS  PubMed  Google Scholar 

  27. Brookes DH, Head-Gordon T (2016) Experimental inferential structure determination of ensembles for intrinsically disordered proteins. J Am Chem Soc 138(13):4530–4538

    Article  CAS  PubMed  Google Scholar 

  28. Caticha A (2004) Relative entropy and inductive inference. In: AIP conference proceedings, AIP, vol 707, pp 75–96

    Google Scholar 

  29. Cesari A, Reißer S, Bussi G (2018) Using the maximum entropy principle to combine simulations and solution experiments. Computation 6(1):15

    Article  CAS  Google Scholar 

  30. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23(2):187–199

    Article  Google Scholar 

  32. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99(20):12562–12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rangan R, Bonomi M, Heller GT, Cesari A, Bussi G, Vendruscolo M (2018) Determination of structural ensembles of proteins: restraining vs reweighting. J Chem Theory Comput 14(12):6632–6641

    Article  CAS  PubMed  Google Scholar 

  34. Oliphant T (2006) NumPy: A guide to NumPy. USA: Trelgol Publishing, http://www.numpy.org/ [Online; accessed Oct 2018]

  35. Jones E, Oliphant T, Peterson P, et al (2001) SciPy: Open source scientific tools for Python. http://www.scipy.org/ [Online; accessed Oct 2018]

  36. Tubbs JD, Condon DE, Kennedy SD, Hauser M, Bevilacqua PC, Turner DH (2013) The nuclear magnetic resonance of CCCC RNA reveals a right-handed helix, and revised parameters for AMBER force field torsions improve structural predictions from molecular dynamics. Biochemistry 52(6):996–1010

    Article  CAS  PubMed  Google Scholar 

  37. Ángyán AF, Szappanos B, Perczel A, Gáspári Z (2010) Consensx: an ensemble view of protein structures and nmr-derived experimental data. BMC Struct Biol 10(1):39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bottaro S, Di Palma F, Bussi G (2014) The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res 42(21):13306–13314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bottaro S, Bussi G, Pinamonti G, Reisser S, Boomsma W, Lindorff-Larsen K (2018) Barnaba: software for analysis of nucleic acid structures and trajectories. RNA. https://doi.org/10.1261/rna.067678.118

  40. Lemak A, Wu B, Yee A, Houliston S, Lee HW, Gutmanas A, Fang X, Garcia M, Semesi A, Wang YX, Prestegard JH, Arrowsmith CH (2014) Structural characterization of a flexible two-domain protein in solution using small angle X-ray scattering and NMR data. Structure 22:1862–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. MARTINI3.0 Open-beta (2018). http://www.cgmartini.nl/index.php/force-field-parameters/particle-definitions. Accessed 21 Oct 2018

  42. Periole X, Cavalli M, Marrink SJ, Ceruso MA (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5(9):1–7. https://doi.org/10.1021/ct9002114

    Article  CAS  Google Scholar 

  43. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  44. Robustelli P, Piana S, Shaw DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci U S A 115:E4758–E4766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  CAS  PubMed  Google Scholar 

  46. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190

    Article  CAS  Google Scholar 

  47. Grudinin S, Garkavenko M, Kazennov A (2017) Pepsi-SAXS: an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles. Acta Crystallogr D 73:449–464

    Article  CAS  Google Scholar 

  48. Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10(2):676–690. https://doi.org/10.1021/ct400617g

    Article  CAS  PubMed  Google Scholar 

  49. Larsen AH, Arleth L, Hansen S (2018) Analysis of small-angle scattering data using model fitting and Bayesian regularization. J Appl Crystallogr 51(4):1151–1161

    Article  CAS  Google Scholar 

  50. Tropp J (1980) Dipolar relaxation and nuclear overhauser effects in nonrigid molecules: the effect of fluctuating internuclear distances. J Chem Phys 72(11):6035–6043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Alexander Lemak and Prof. Cheryl H. Arrowsmith for sharing the SAXS data on sf3636. We also thank Yong Wang, Mustapha Carab Ahmed, and Andreas Haahr Larsen for input and testing of BME. The research and development described here were supported by a grant from The Velux Foundations, a Hallas-Møller Stipend from the Novo Nordisk Foundation, and the Lundbeck Foundation BRAINSTRUC initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kresten Lindorff-Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bottaro, S., Bengtsen, T., Lindorff-Larsen, K. (2020). Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach. In: Gáspári, Z. (eds) Structural Bioinformatics. Methods in Molecular Biology, vol 2112. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0270-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0270-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0269-0

  • Online ISBN: 978-1-0716-0270-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics