Skip to main content

Chemoenzymatic Synthesis of HIV-1 Glycopeptide Antigens

  • Protocol
  • First Online:
Peptide Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2103))

Abstract

Glycosylation is one of the most common posttranslational modifications of proteins and can exert profound effects on the inherent properties and biological functions of a given protein. Structurally well-defined homogeneous glycopeptides are highly demanded for functional studies and biomedical applications. Various chemical and chemoenzymatic methods have been reported so far for synthesizing different N- and O-glycopeptides. Among them, the chemoenzymatic method based on an endoglycosidase-catalyzed ligation of free N-glycans and GlcNAc-tagged peptides is emerging as a highly efficient method for constructing large complex N-glycopeptides. This chemoenzymatic approach consists of two key steps. The first step is to prepare the GlcNAc peptide through automated solid-phase peptide synthesis (SPPS) by incorporating an Asn-linked GlcNAc moiety at a predetermined glycosylation site; and the second step is to transfer an N-glycan from the corresponding N-glycan oxazoline en bloc to the GlcNAc peptide by an endoglycosidase or its efficient glycosynthase mutant. In this chapter, we provide detailed procedures of this chemoenzymatic method by demonstrating the synthesis of two HIV-1 V3 glycopeptide antigens carrying a high-mannose-type and a complex-type N-glycan, respectively. The described procedures should be generally applicable for the synthesis of other biologically important N-glycopeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  2. Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8:226–234

    Article  CAS  PubMed  Google Scholar 

  3. Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143:672–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Varki A (2017) Biological roles of glycans. Glycobiology 27:3–49

    Article  CAS  PubMed  Google Scholar 

  6. Payne RJ, Wong CH (2010) Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem Commun (Camb) 46:21–43

    Article  CAS  Google Scholar 

  7. Unverzagt C, Kajihara Y (2013) Chemical assembly of N-glycoproteins: a refined toolbox to address a ubiquitous posttranslational modification. Chem Soc Rev 42:4408–4420

    Article  CAS  PubMed  Google Scholar 

  8. Wilson RM, Dong S, Wang P et al (2013) The winding pathway to erythropoietin along the chemistry-biology frontier: a success at last. Angew Chem Int Ed 52:7646–7665

    Article  CAS  Google Scholar 

  9. Wang P, Dong S, Shieh JH et al (2013) Erythropoietin derived by chemical synthesis. Science 342:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murakami M, Kiuchi T, Nishihara M et al (2016) Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity. Sci Adv 2:e1500678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Aussedat B, Fasching B, Johnston E et al (2012) Total synthesis of the alpha-subunit of human glycoprotein hormones: toward fully synthetic homogeneous human follicle-stimulating hormone. J Am Chem Soc 134:3532–3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nagorny P, Sane N, Fasching B et al (2012) Probing the frontiers of glycoprotein synthesis: the fully elaborated beta-subunit of the human follicle-stimulating hormone. Angew Chem Int Ed 51:975–979

    Article  CAS  Google Scholar 

  13. Aussedat B, Vohra Y, Park PK et al (2013) Chemical synthesis of highly congested gp120 V1V2 N-glycopeptide antigens for potential HIV-1-directed vaccines. J Am Chem Soc 135:13113–13120

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto N, Tanabe Y, Okamoto R et al (2008) Chemical synthesis of a glycoprotein having an intact human complex-type sialyloligosaccharide under the Boc and Fmoc synthetic strategies. J Am Chem Soc 130:501–510

    Article  CAS  PubMed  Google Scholar 

  15. Sakamoto I, Tezuka K, Fukae K et al (2012) Chemical synthesis of homogeneous human glycosyl-interferon-beta that exhibits potent antitumor activity in vivo. J Am Chem Soc 134:5428–5431

    Article  CAS  PubMed  Google Scholar 

  16. Wang LX, Amin MN (2014) Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Chem Biol 21:51–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Fairbanks AJ (2017) The ENGases: versatile biocatalysts for the production of homogeneous N-linked glycopeptides and glycoproteins. Chem Soc Rev 46:5128–5146

    Article  CAS  PubMed  Google Scholar 

  18. Li C, Wang LX (2018) Chemoenzymatic methods for the synthesis of glycoproteins. Chem Rev 118:8359–8413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Umekawa M, Li C, Higashiyama T et al (2010) Efficient glycosynthase mutant derived from Mucor hiemalis endo-beta-N-acetylglucosaminidase capable of transferring oligosaccharide from both sugar oxazoline and natural N-glycan. J Biol Chem 285:511–521

    Article  CAS  PubMed  Google Scholar 

  20. Umekawa M, Huang W, Li B et al (2008) Mutants of Mucor hiemalis endo-beta-N-acetylglucosaminidase show enhanced transglycosylation and glycosynthase-like activities. J Biol Chem 283:4469–4479

    Article  CAS  PubMed  Google Scholar 

  21. Huang W, Li C, Li B et al (2009) Glycosynthases enable a highly efficient chemoenzymatic synthesis of N-glycoproteins carrying intact natural N-glycans. J Am Chem Soc 131:2214–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giddens JP, Lomino JV, Amin MN et al (2016) Endo-F3 glycosynthase mutants enable chemoenzymatic synthesis of core-fucosylated triantennary complex type glycopeptides and glycoproteins. J Biol Chem 291:9356–9370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang W, Giddens J, Fan SQ et al (2012) Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 134:12308–12318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li T, Tong X, Yang Q et al (2016) Glycosynthase mutants of endoglycosidase S2 show potent transglycosylation activity and remarkably relaxed substrate specificity for antibody glycosylation remodeling. J Biol Chem 291:16508–16518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Priyanka P, Parsons TB, Miller A et al (2016) Chemoenzymatic synthesis of a phosphorylated glycoprotein. Angew Chem Int Ed 55:5058–5061

    Article  CAS  Google Scholar 

  26. Yamaguchi T, Amin MN, Toonstra C et al (2016) Chemoenzymatic synthesis and receptor binding of mannose-6-phosphate (M6P)-containing glycoprotein ligands reveal unusual structural requirements for M6P receptor recognition. J Am Chem Soc 138:12472–12485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Amin MN, Mclellan JS, Huang W et al (2013) Synthetic glycopeptides reveal the glycan specificity of HIV-neutralizing antibodies. Nat Chem Biol 9:521–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toonstra C, Amin MN, Wang LX (2016) Site-selective chemoenzymatic glycosylation of an HIV-1 polypeptide antigen with two distinct N-glycans via an orthogonal protecting group strategy. J Org Chem 81:6176–6185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Orwenyo J, Cai H, Giddens J et al (2017) Systematic synthesis and binding study of HIV V3 glycopeptides reveal the fine epitopes of several broadly neutralizing antibodies. ACS Chem Biol 12:1566–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cai H, Orwenyo J, Guenaga J et al (2017) Synthetic multivalent V3 glycopeptides display enhanced recognition by glycan-dependent HIV-1 broadly neutralizing antibodies. Chem Commun (Camb) 53:5453–5456

    Article  CAS  Google Scholar 

  31. Cai H, Orwenyo J, Giddens JP et al (2017) Synthetic three-component HIV-1 V3 glycopeptide immunogens induce glycan-dependent antibody responses. Cell Chem Biol 24:1513–1522.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai H, Zhang R, Orwenyo J et al (2018) Multivalent antigen presentation enhances the immunogenicity of a synthetic three-component HIV-1 V3 glycopeptide vaccine. ACS Cent Sci 4:582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai H, Zhang RS, Orwenyo J et al (2018) Synthetic HIV V3 glycopeptide immunogen carrying a N334 N-glycan induces glycan-dependent antibodies with promiscuous site recognition. J Med Chem 61:10116–10125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin CW, Tsai MH, Li ST et al (2015) A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc Natl Acad Sci U S A 112:10611–10616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurogochi M, Mori M, Osumi K et al (2015) Glycoengineered monoclonal antibodies with homogeneous glycan (M3, G0, G2, and A2) using a chemoenzymatic approach have different affinities for FcgammaRIIIa and variable antibody-dependent cellular cytotoxicity activities. PLoS One 10:e0132848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Giddens JP, Wang LX (2015) Chemoenzymatic glyco-engineering of monoclonal antibodies. Methods Mol Biol 1321:375–387

    Article  PubMed  PubMed Central  Google Scholar 

  37. Quast I, Keller CW, Maurer MA et al (2015) Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest 125:4160–4170

    Article  PubMed  PubMed Central  Google Scholar 

  38. Parsons TB, Struwe WB, Gault J et al (2016) Optimal synthetic glycosylation of a therapeutic antibody. Angew Chem Int Ed 55:2361–2367

    Article  CAS  Google Scholar 

  39. Liu R, Giddens J, Mcclung CM et al (2016) Evaluation of a glycoengineered monoclonal antibody via LC-MS analysis in combination with multiple enzymatic digestion. MAbs 8:340–346

    Article  CAS  PubMed  Google Scholar 

  40. Li T, Dilillo D, Bournazos S et al (2017) Modulating IgG effector functions by Fc glycan engineering. Proc Natl Acad Sci U S A 114:3485–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giddens JP, Lomino JV, Dilillo DJ et al (2018) Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. Proc Natl Acad Sci U S A 115:12023–12027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH grants R01GM080374 and R01GM096973 to L.X.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Xi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zong, G., Li, C., Wang, LX. (2020). Chemoenzymatic Synthesis of HIV-1 Glycopeptide Antigens. In: Hussein, W., Skwarczynski, M., Toth, I. (eds) Peptide Synthesis. Methods in Molecular Biology, vol 2103. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0227-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0227-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0226-3

  • Online ISBN: 978-1-0716-0227-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics