Skip to main content

Perfusion Control for High Cell Density Cultivation and Viral Vaccine Production

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2095))

Abstract

The global demand for complex biopharmaceuticals like recombinant proteins, vaccines, or viral vectors is steadily rising. To further improve process productivity and to reduce production costs, process intensification can contribute significantly. The design and optimization of perfusion processes toward very high cell densities require careful selection of strategies for optimal perfusion rate control. In this chapter, various options are discussed to guarantee high cell-specific virus yields and to achieve virus concentrations up to 1010 virions/mL. This includes reactor volume exchange regimes and perfusion rate control based on process variables such as cell concentration and metabolite or by-product concentration. Strategies to achieve high cell densities by perfusion rate control and their experimental implementation are described in detail for pseudo-perfusion or small-scale perfusion bioreactor systems. Suspension cell lines such as MDCK, BHK-21, EB66®, and AGE1.CR.pIX® are used to exemplify production of influenza, yellow fever, Zika, and modified vaccinia Ankara virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plotkin SA (2003) Vaccines, vaccination, and vaccinology. J Infect Dis 187(9):1349–1359. https://doi.org/10.1086/374419

    Article  CAS  PubMed  Google Scholar 

  2. Andre FE, Booy R, Bock HL, Clemens J, Datta SK, John TJ, Lee BW, Lolekha S, Peltola H, Ruff T (2008) Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull World Health Organ 86:140–146

    Article  CAS  Google Scholar 

  3. Tapia F, Vázquez-Ramírez D, Genzel Y, Reichl U (2016) Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. ApplMicrobiolBiotechnol 100(5):2121–2132. https://doi.org/10.1007/s00253-015-7267-9

    Article  CAS  Google Scholar 

  4. Kompala DS, Ozturk SS (2005) Optimization of high cell density perfusion bioreactors. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies, vol 1. CRC Press, Boca Raton, pp 387–411

    Google Scholar 

  5. Karst DJ, Steinhoff RF, Kopp MRG, Serra E, Soos M, Zenobi R, Morbidelli M (2017) Intracellular CHO cell metabolite profiling reveals steady-state dependent metabolic fingerprints in perfusion culture. BiotechnolProgr 33(4):879–890. https://doi.org/10.1002/btpr.2421

    Article  CAS  Google Scholar 

  6. Ozturk SS (1996) Engineering challenges in high density cell culture systems. Cytotechnology 22(1):3–16. https://doi.org/10.1007/bf00353919

    Article  CAS  PubMed  Google Scholar 

  7. Dowd JE, Jubb A, Kwok KE, Piret JM (2003) Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology 42(1):35–45. https://doi.org/10.1023/A:1026192228471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vazquez-Ramirez D, Genzel Y, Jordan I, Sandig V, Reichl U (2018) High-cell-density cultivations to increase MVA virus production. Vaccine 36(22):3124–3133. https://doi.org/10.1016/j.vaccine.2017.10.112

    Article  CAS  PubMed  Google Scholar 

  9. Hiller GW, Ovalle AM, Gagnon MP, Curran ML, Wang W (2017) Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. BiotechnolBioeng 114(7):1438–1447. https://doi.org/10.1002/bit.26259

    Article  CAS  Google Scholar 

  10. Gallo-Ramirez LE, Nikolay A, Genzel Y, Reichl U (2015) Bioreactor concepts for cell culture-based viral vaccine production. Expert Rev Vaccines 14(9):1181–1195. https://doi.org/10.1586/14760584.2015.1067144

    Article  CAS  PubMed  Google Scholar 

  11. Jordan I, Vos A, Beilfuß S, Neubert A, Breul S, Sandig V (2009) An avian cell line designed for production of highly attenuated viruses. Vaccine 27(5):748–756. https://doi.org/10.1016/j.vaccine.2008.11.066

    Article  CAS  PubMed  Google Scholar 

  12. Brown SW, Mehtali M (2010) The Avian EB66(R) cell line, application to vaccines, and therapeutic protein production. PDA JPharmaceutSciTechnol/ PDA 64(5):419–425

    CAS  Google Scholar 

  13. Huang D, Peng W-J, Ye Q, Liu X-P, Zhao L, Fan L, Xia-Hou K, Jia H-J, Luo J, Zhou L-T, Li B-B, Wang S-L, Xu W-T, Chen Z, Tan W-S (2015) Serum-free suspension culture of MDCK cells for production of influenza H1N1 vaccines. PLoS One 10(11):e0141686. https://doi.org/10.1371/journal.pone.0141686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spearman C (1908) The method of ‘right and wrong cases’(‘constant stimuli’) without Gauss’s formulae. Br J Psychol 2(3):227–242

    Google Scholar 

  15. Kärber G (1931) BeitragzurkollektivenBehandlungpharmakologischerReihenversuche. Naunyn-SchmiedebergsArchivfürexperimentellePathologie und Pharmakologie 162(4):480–483. https://doi.org/10.1007/bf01863914

    Article  Google Scholar 

  16. Konstantinov K, Goudar C, Ng M, Meneses R, Thrift J, Chuppa S, Matanguihan C, Michaels J, Naveh D (2006) The“push-to-low” approach for optimization of high-density perfusion cultures of animal cells. AdvBiochemEng/Biotechnol 101:75–98

    CAS  Google Scholar 

  17. Nikolay A, Léon A, Schwamborn K, Genzel Y, Reichl U (2018) Process intensification of EB66® cell cultivations leads to high-yield yellow fever and Zika virus production. ApplMicrobiolBiotechnol 102(20):8725–8737. https://doi.org/10.1007/s00253-018-9275-z

    Article  CAS  Google Scholar 

  18. Vázquez-Ramírez D, Jordan I, Sandig V, Genzel Y, Reichl U (2019) High titer MVA and influenza A virus production using a hybrid fed-batch/perfusion strategy with an ATF system. ApplMicrobiolBiotechnol 103(7):3025–3035. https://doi.org/10.1007/s00253-019-09694-2

    Article  CAS  Google Scholar 

  19. Genzel Y, Vogel T, Buck J, Behrendt I, Ramirez DV, Schiedner G, Jordan I, Reichl U (2014) High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Vaccine 32(24):2770–2781. https://doi.org/10.1016/j.vaccine.2014.02.016

    Article  CAS  PubMed  Google Scholar 

  20. Ferreira TB, Ferreira AL, Carrondo MJT, Alves PM (2005) Effect of refeed strategies and non-ammoniagenic medium on adenovirus production at high cell densities. J Biotechnol 119(3):272–280. https://doi.org/10.1016/j.jbiotec.2005.03.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank our former colleague Daniel V. Ramirez for experimental data on the lactate-based perfusion rate control and for the provision of the ATF bioreactor illustration. Furthermore, we would like to express our gratitude to our collaboration partners for the allowance to work with the cell lines (ProBioGen AG, AGE1.CRpIX; Valneva, EB66®; IDT, BHK-21; East China University of Science and Technology, MDCK). Additionally, we thank Hamilton Bonaduz AG for providing the analog output box and Eppendorf for the implementation to the DasGip control system. Our gratitude also goes to Sartorius AG for providing the BioPAT Trace system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Nikolay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nikolay, A., Bissinger, T., Gränicher, G., Wu, Y., Genzel, Y., Reichl, U. (2020). Perfusion Control for High Cell Density Cultivation and Viral Vaccine Production. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 2095. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0191-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0191-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0190-7

  • Online ISBN: 978-1-0716-0191-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics