Skip to main content

Systematic Screening of Viral Entry Inhibitors Using Surface Plasmon Resonance

  • Protocol
  • First Online:
Targeting Enzymes for Pharmaceutical Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2089))

Abstract

Surface plasmon resonance (SPR) analytical method was initially used as biosensor for analyzing diverse biomolecular interactions and recently gained important place in the drug discovery. Here, I describe the procedures for screening of inhibitors against the viral proteins using the SPR. Using the described procedures, in the past, we were able to identify several antiviral products that interfere viral-host receptor proteins interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shuker SB, Hajduk PJ, Meadows RP et al (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  CAS  Google Scholar 

  2. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38:1784–1788

    Article  CAS  Google Scholar 

  3. Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54

    Article  CAS  Google Scholar 

  4. Duong-Thi MD, Bergstrom M, Fex T et al (2013) High-throughput fragment screening by affinity LC-MS. J Biomol Screen 18:160–171

    Article  Google Scholar 

  5. Ladbury JE, Klebe G, Freire E (2010) Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9:23–27

    Article  CAS  Google Scholar 

  6. Kranz JK, SChalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493:277–298

    Article  CAS  Google Scholar 

  7. Lewis LM, Engle LJ, Pierceall WE et al (2004) Affinity capillary electrophoresis for the screening of novel antimicrobial targets. J Biomol Screen 9:303–308

    Article  CAS  Google Scholar 

  8. Duong-Thi MD, Meiby E, Bergstrom M et al (2011) Weak affinity chromatography as a new approach for fragment screening in drug discovery. Anal Biochem 414:138–146

    Article  CAS  Google Scholar 

  9. Proll F, Fechner P, Proll G (2001) Direct optical detection in fragment-based screening. Anal Bioanal Chem 393:1557–1562

    Article  Google Scholar 

  10. Myszka DG, Rich RL (2000) Implementing surface plasmon resonance biosensors in drug discovery. Pharm Sci Technol Today 3:310–317

    Article  CAS  Google Scholar 

  11. Cooper MA (2003) Label-free screening of biomolecular interactions. Anal Bioanal Chem 377:834–842

    Article  CAS  Google Scholar 

  12. Lofas S (2004) Optimizing the hit-to-lead process using SPR analysis. Assay Drug Dev Technol 2:407–416

    Article  Google Scholar 

  13. Huber W (2005) A new strategy for improved secondary screening and lead optimization using high-resolution SPR characterization of compound-target interactions. J Mol Recognit 18:273–281

    Article  CAS  Google Scholar 

  14. Geschwindner S, Olsson LL, Albert JS et al (2007) Discovery of a novel warhead β-secretase through fragment-based lead generation. J Med Chem 50:5903–5911

    Article  CAS  Google Scholar 

  15. Godemann R, Madden J, Kramer J et al (2009) Fragment-based discovery of BACE1 inhibitors using functional assays. Biochemistry 48:10743–10751

    Article  CAS  Google Scholar 

  16. Cole DC, Olland AM, Jacob J et al (2010) Identification and characterization of acidic mammalian chitinase inhibitors. J Med Chem 53:6122–6128

    Article  CAS  Google Scholar 

  17. Giannetti AM (2011) From experimental design to validation hits a comprehensive walk-through of fragment lead identification using surface plasmon resonance. Methods Enzymol 493:169–218

    Article  CAS  Google Scholar 

  18. Gopinath SC, Hayashi K, Kumar PKR (2012) Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J Virol 86:6732–6744

    Article  CAS  Google Scholar 

  19. Gopinath SC, Hayashi K, Lee JB et al (2013) Analysis of compounds that interfere with herpes simplex virus-host receptor interactions using surface plasmon resonance. Anal Chem 85:10455–10462

    Article  CAS  Google Scholar 

  20. Suenaga E, Kumar PKR (2014) An aptamer that binds efficiently to the hemagglutinins of highly pathogenic avian influenza viruses (H5N1 and H7N7) and inhibits hemagglutinin-glycan interactions. Acta Biomater 10:1314–1323

    Article  CAS  Google Scholar 

  21. Zhang N, Yan J, Lu G et al (2011) Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat Commun 2:577. https://doi.org/10.1038/ncomms1571

    Article  CAS  PubMed  Google Scholar 

  22. Karlesson R, Katsamba PS, Nordin H et al (2006) Analyzing a kinetic titration series using affinity biosensors. Anal Biochem 349:136–147

    Article  Google Scholar 

  23. Suenaga E, Mizuno H, Kumar PKR (2012) Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance. Biosens Bioelectron 32:195–201

    Article  CAS  Google Scholar 

  24. Biacore: Concentration analysis Handbook BR-1005-12 Edition AB (2007) GE Healthcare, Supplied with T100 Biacore machine. 53–54

    Google Scholar 

  25. Hayashi K, Kawauchi M, Nakai C et al (2001) Characterization of inhibitory action of concanamycins against herpes simplex virus. Antivir Chem Chemother 12:51–59

    Article  CAS  Google Scholar 

  26. Srisomporn P, Hayashi K, Lee JB et al (2001) Effects of structural modification of calcium spirulan, a sulfated polysaccharide from spirulina platensis, on antiviral activity. Chem Pharm Bull 49:484–485

    Article  Google Scholar 

  27. Shukla D, Liu J, Blaiklock P et al (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22

    Article  CAS  Google Scholar 

  28. Liu J, Shriver Z, Pope RM (2002) Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D. J Biol Chem 277:33456–33467

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from JST and AIST to P.K.R.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penmetcha K. R. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, P.K.R. (2020). Systematic Screening of Viral Entry Inhibitors Using Surface Plasmon Resonance. In: Labrou, N. (eds) Targeting Enzymes for Pharmaceutical Development. Methods in Molecular Biology, vol 2089. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0163-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0163-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0162-4

  • Online ISBN: 978-1-0716-0163-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics