Skip to main content

The In Silico Fischer Lock-and-Key Model: The Combined Use of Molecular Descriptors and Docking Poses for the Repurposing of Old Drugs

  • Protocol
  • First Online:
Targeting Enzymes for Pharmaceutical Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2089))

Abstract

Not always lead compound and/or derivatives are suitable for the specific biological target for which they are designed but, in some cases, discarded compounds proved to be good binders for other biological targets; therefore, drug repurposing constitute a valid alternative to avoid waste of human and financial resources. Our virtual lock-and-key methods, VLKA and Conf-VLKA, furnish a strong support to predict the efficacy of a designed drug a priori its biological evaluation, or the correct biological target for a set of the selected compounds, allowing thus the repurposing of known and unknown, active and inactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dimasi JA, Feldman L, Seckler A, Wilson A (2010) Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther 87:272–277. https://doi.org/10.1038/clpt.2009.295

    Article  CAS  PubMed  Google Scholar 

  2. Dickson M, Gagnon JP (2004) Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 3:417–429. https://doi.org/10.1038/nrd1382

    Article  CAS  PubMed  Google Scholar 

  3. Peterson RT (2008) Chemical biology and the limits of reductionism. Nat Chem Biol 4:635–638. https://doi.org/10.1038/nchembio1108-635

    Article  CAS  PubMed  Google Scholar 

  4. Nobeli I, Favia AD, Thornton JM (2009) Protein promiscuity and its implications for biotechnology. Nat Biotechnol 27:157–167. https://doi.org/10.1038/nbt1519

    Article  CAS  PubMed  Google Scholar 

  5. Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 6:41–77. https://doi.org/10.1586/ecp.12.74

    Article  CAS  PubMed  Google Scholar 

  6. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690. https://doi.org/10.1038/nchembio.118

    Article  CAS  PubMed  Google Scholar 

  7. Peters JU (2013) Polypharmacology—foe or friend? J Med Chem 56:8955–8971. https://doi.org/10.1021/jm400856t

    Article  CAS  PubMed  Google Scholar 

  8. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996. https://doi.org/10.1038/nrd2199

    Article  CAS  PubMed  Google Scholar 

  9. Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 15:104–111. https://doi.org/10.1016/j.sbi.2006.01.013

    Article  CAS  Google Scholar 

  10. Aislyn DW, Boran RI (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13:297–309. https://doi.org/10.1126/scisignal.2001965.Introduction

    Article  Google Scholar 

  11. Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57:7874–7887. https://doi.org/10.1021/jm5006463

    Article  CAS  PubMed  Google Scholar 

  12. Gujral TS, Peshkin L, Kirschner MW (2014) Exploiting polypharmacology for drug target deconvolution. Proc Natl Acad Sci 111:5048–5053. https://doi.org/10.1073/pnas.1403080111

    Article  CAS  PubMed  Google Scholar 

  13. Fischer E (1895) Ueber den Einfluss der Konfiguration auf die Wirkung der Enzyme III. Berichte der Dtsch Chem Gesellschaft 28:1429–1438. https://doi.org/10.1002/cber.18950280243

    Article  CAS  Google Scholar 

  14. Forster MO (1920) Emil Fischer memorial lecture. J Chem Soc Trans 117:1157–1201. https://doi.org/10.1039/CT9201701157

    Article  CAS  Google Scholar 

  15. Fischer E (1899) Bedeutung der Stereochemie für die Physiologie. Hoppe Seylers Z Physiol Chem. https://doi.org/10.1515/bchm2.1899.26.1-2.60

  16. Lauria A, Tutone M, Almerico AM (2011) Virtual lock-and-key approach: the in silico revival of Fischer model by means of molecular descriptors. Eur J Med Chem 46:4274–4280. https://doi.org/10.1016/j.ejmech.2011.06.033

    Article  CAS  PubMed  Google Scholar 

  17. Tutone M, Perricone U, Almerico AM (2017) Conf-VLKA: a structure-based revisitation of the Virtual Lock-and-Key Approach. J Mol Graph Model 71:50–57. https://doi.org/10.1016/j.jmgm.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  18. Lauria A, Ippolito M, Almerico AM (2009) Principal component analysis on molecular descriptors as an alternative point of view in the search of new Hsp90 inhibitors. Comput Biol Chem 33:386–390. https://doi.org/10.1016/j.compbiolchem.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  19. Lauria A, Tutone M, Barone G, Almerico AM (2014) Multivariate analysis in the identification of biological targets for designed molecular structures: the BIOTA protocol. Eur J Med Chem 75:106–110. https://doi.org/10.1016/j.ejmech.2014.01.025

    Article  CAS  PubMed  Google Scholar 

  20. Lauria A, Patella C, Abbate I et al (2012) Lead optimization through VLAK protocol: new annelated pyrrolo-pyrimidine derivatives as antitumor agents. Eur J Med Chem 55:375–383. https://doi.org/10.1016/j.ejmech.2012.07.046

    Article  CAS  PubMed  Google Scholar 

  21. Lauria A, Abbate I, Patella C et al (2013) New annelated thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines, with potent anticancer activity, designed through VLAK protocol. Eur J Med Chem 62:416–424. https://doi.org/10.1016/j.ejmech.2013.01.019

    Article  CAS  Google Scholar 

  22. Liu T, Lin Y, Wen X et al (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198–D201. https://doi.org/10.1093/nar/gkl999

    Article  CAS  PubMed  Google Scholar 

  23. Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044. https://doi.org/10.1021/cr950202r

    Article  CAS  PubMed  Google Scholar 

  24. LigPrep, version 2.5. In: Suite. Schrödinger, LLC, New York NY; 2012

    Google Scholar 

  25. Rogers D, Brown RD, Hahn M (2005) Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen 10:682–686. https://doi.org/10.1177/1087057105281365

    Article  CAS  PubMed  Google Scholar 

  26. Duan J, Dixon SL, Lowrie JF, Sherman W (2010) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29:157–170. https://doi.org/10.1016/j.jmgm.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  27. Gilbert G (1972) Distance between sets. Nature 239:174. https://doi.org/10.1038/239174c0

    Article  Google Scholar 

  28. Sastry M, Lowrie JF, Dixon SL, Sherman W (2010) Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J Chem Inf Model 50:771–784. https://doi.org/10.1021/ci100062n

    Article  CAS  PubMed  Google Scholar 

  29. Dutta S, Berman MH, Bluhm FW (2005) RCSB Protein Data Bank. Curr Prot Bioinformatics chapter 1: Unit 1.9. doi: https://doi.org/10.1002/0471250953.bi0109s20

  30. Maestro, version 9.4, Schrödinger, LLC, New York, NY; 2013

    Google Scholar 

  31. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759. https://doi.org/10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

  32. Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45:4350–4358. https://doi.org/10.1021/jm020155c

    Article  CAS  PubMed  Google Scholar 

  33. Kubinyi H (2002) Chemical similarity and biological activities. J Braz Chem Soc 13:717–726. https://doi.org/10.1590/S0103-50532002000600002

    Article  CAS  Google Scholar 

  34. Marona-Lewicka D, Nichols DE (2007) Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol Biochem Behav 87:453–461. https://doi.org/10.1016/j.pbb.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  35. Marona-Lewicka D, Nichols DE (2009) WAY 100635 produces discriminative stimulus effects in rats mediated by dopamine D4 receptor activation. Behav Pharmacol 20:114–118. https://doi.org/10.1097/FBP.0b013e3283242f1a

    Article  CAS  PubMed  Google Scholar 

  36. Roth BL, Sheffer DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359. https://doi.org/10.1038/nrd1346

    Article  CAS  PubMed  Google Scholar 

  37. Bajorath J (2008) Computational analysis of ligand relationships within target families. Curr Opin Chem Biol 12:352–358. https://doi.org/10.1016/j.cbpa.2008.01.044

    Article  CAS  PubMed  Google Scholar 

  38. Oprea TI, Tropsha A, Faulon JL, Rintoul MD (2007) Systems chemical biology. Nat Chem Biol 3:447–450. https://doi.org/10.1038/nchembio0807-447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599. https://doi.org/10.1021/jm0704090

    Article  CAS  PubMed  Google Scholar 

  40. Siegel MG, Vieth M (2007) Drugs in other drugs: a new look at drugs as fragments. Drug Discov Today 12:71–79. https://doi.org/10.1016/j.drudis.2006.11.011

    Article  CAS  PubMed  Google Scholar 

  41. Young DW, Bender A, Hoyt J et al (2008) Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol 4:59–68. https://doi.org/10.1038/nchembio.2007.53

    Article  CAS  PubMed  Google Scholar 

  42. Wagner BK, Kitami T, Gilbert TJ et al (2008) Large-scale chemical dissection of mitochondrial function. Nat Biotechnol 26:343–351. https://doi.org/10.1038/nbt1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krejsa CM, Horvath D, Rogalski SL et al (2003) Predicting ADME properties and side effects: the BioPrint approach. Curr Opin Drug Discov Devel 6:470–480

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work reported in this chapter is based on the reference [17] (Tutone M, Perricone U, Almerico AM (2017) Conf-VLKA: A structure-based revisitation of the virtual lock-and-key approach. J Mol Graph Model 71:50–57. doi: 10.1016/j.jmgm.2016.11.006) and was adapted with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Tutone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tutone, M., Almerico, A.M. (2020). The In Silico Fischer Lock-and-Key Model: The Combined Use of Molecular Descriptors and Docking Poses for the Repurposing of Old Drugs. In: Labrou, N. (eds) Targeting Enzymes for Pharmaceutical Development. Methods in Molecular Biology, vol 2089. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0163-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0163-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0162-4

  • Online ISBN: 978-1-0716-0163-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics