Skip to main content

The Role of Neutrophils in the Immune System: An Overview

  • Protocol
  • First Online:
Neutrophil

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2087))

Abstract

Neutrophils, also known as polymorphonuclear neutrophils (PMNs), have long been considered as the short-lived, nonspecific white cells that form pus—and also happen to kill invading microbes. Indeed, neutrophils were often neglected (and largely not considered) as immune cells. This historic view of neutrophils has changed considerably over the past several decades, and we now know that in addition to playing the predominant role in the clearance of bacteria and fungi, they have a major role in shaping the host response to infection and immune system homeostasis. The change in our view of the role of neutrophils in the immune system has been due in large part to the study of these cells in vitro. Such work has been made possible by new and/or improved methods and approaches used to investigate neutrophils. These methods are the focus of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoebe K, Janssen E, Beutler B (2004) The interface between innate and adaptive immunity. Nat Immunol 5:971–974

    Article  CAS  PubMed  Google Scholar 

  2. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms: production by leukocytes of superoxide,a potential bactericidal agent. J Clin Invest 52:741–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klebanoff SJ (1967) Iodination of bacteria: a bactericidal mechanism. J Exp Med 126:1063–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lehrer RI, Hanifin J, Cline MJ (1969) Defective bactericidal activity in myeloperoxidase-deficient human neutrophils. Nature 223:78–79

    Article  CAS  PubMed  Google Scholar 

  5. Bainton DF, Ullyot JL, Farquhar MG (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med 134:907–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bainton DF, Farquhar MG (1968) Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. I. Histochemical staining of bone marrow smears. J Cell Biol 39:286–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521

    Article  CAS  PubMed  Google Scholar 

  8. Segal AW, Abo A (1993) The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 18:43–47

    Article  CAS  PubMed  Google Scholar 

  9. Babior BM (1999) NADPH oxidase: An update. Blood 93:1464–1476

    Article  CAS  PubMed  Google Scholar 

  10. Clark RA (1990) The human neutrophil respiratory burst oxidase. J Infect Dis 161:1140–1147

    Article  CAS  PubMed  Google Scholar 

  11. Zigmond SH (1978) Chemotaxis by polymorphonuclear leukocytes. JCellBiol 77:269–287

    Article  CAS  Google Scholar 

  12. Southwick FS, Stossel TP (1983) Contractile proteins in leukocyte function. Semin Hematol 20:305–321

    CAS  PubMed  Google Scholar 

  13. Fliedner TM, Cronkite EP, Robertson JS (1964) Granulocytopoiesis. I. Senescence and random loss of neutrophilic granulocytes in human beings. Blood 24:402–414

    Article  CAS  PubMed  Google Scholar 

  14. Athens JW, Haab OP, Raab SO et al (1961) Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest 40:989–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rossi F, Zatti M (1964) Changes in the metabolic pattern of polymorphonuclear leukocytes during phagocytosis. Br J Exp Pathol 45:548–559

    CAS  PubMed  PubMed Central  Google Scholar 

  16. DeLeo FR, Nauseef WM (2019) Granulocytic phagocytes. In: Bennett JE, Dolin R, Blaser M (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 9th edn. Elsevier Limited, Oxford. In press

    Google Scholar 

  17. Kobayashi SD, Voyich JM, Buhl CL et al (2002) Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: cell fate is regulated at the level of gene expression. Proc Natl Acad Sci USA 99:6901–6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Theilgaard-Mönch K, Knudsen S, Follin P et al (2004) The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J Immunol 172:7684–7693

    Article  PubMed  Google Scholar 

  19. Zhang XQ, Kluger Y, Nakayama Y et al (2004) Gene expression in mature neutrophils: early responses to inflammatory stimuli. J Leukoc Biol 75:358–372

    Article  CAS  PubMed  Google Scholar 

  20. Strieter RM, Kasahara K, Allen RM et al (1992) Cytokine-induced neutrophil-derived interleukin-8. Am J Pathol 141:397–407

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schiffmann E, Corcoran BA, Wahl SM (1975) N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A 72:1059–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Snyderman R, Goetzl EJ (1981) Molecular and cellular mechanisms of leukocyte chemotaxis. Science 213:830–835

    Article  CAS  PubMed  Google Scholar 

  23. He HQ, Ye RD (2017) The formyl peptide receptors: diversity of ligands and mechanism for recognition. Molecules 22(3):455

    Article  PubMed Central  CAS  Google Scholar 

  24. O'Flaherty JT, Showell HJ, Ward PA (1977) Influence of extracellular Ca2+ and Mg2+ on chemotactic factor-induced neutrophil aggregation. Inflammation 2:265–276

    Article  CAS  PubMed  Google Scholar 

  25. Serhan CN, Broekman MJ, Korchak HM et al (1983) Changes in phosphatidylinositol and phosphatidic acid in stimulated human neutrophils. Relationship to calcium mobilization, aggregation and superoxide radical generation. Biochim Biophys Acta 762:420–428

    Article  CAS  PubMed  Google Scholar 

  26. McPhail LC, Clayton CC, Snyderman R (1984) A potential second messenger role for unsaturated fatty acids: activation of Ca++−dependant protein kinase. Science 224:622–625

    Article  CAS  PubMed  Google Scholar 

  27. Aharoni I, Pick E (1990) Activation of the superoxide-generating NADPH oxidase of macrophages by sodium dodecyl sulfate in a soluble cell-free system: evidence for involvement of a G protein. J Leukoc Biol 48:107–115

    Article  CAS  PubMed  Google Scholar 

  28. Quinn MT, Parkos CA, Walker L et al (1989) Association of a ras-related protein with cytochrome b of human neutrophils. Nature 342:198–200

    Article  CAS  PubMed  Google Scholar 

  29. Abo A, Pick E, Hall A et al (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353:668–670

    Article  CAS  PubMed  Google Scholar 

  30. Knaus UG, Heyworth PG, Evans T et al (1991) Regulation of phagocyte oxygen radical production by the GTP- binding protein Rac2. Science 254:1512–1515

    Article  CAS  PubMed  Google Scholar 

  31. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    Article  CAS  PubMed  Google Scholar 

  32. Savill JS, Wyllie AH, Henson JE et al (1989) Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 83:865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Whyte MK, Meagher LC, MacDermot J et al (1993) Impairment of function in aging neutrophils is associated with apoptosis. J Immunol 150:5124–5134

    CAS  PubMed  Google Scholar 

  34. DeLeo FR (2004) Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9:399–413

    Article  CAS  PubMed  Google Scholar 

  35. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  36. Boeltz S, Amini P, Anders HJ et al (2019) To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ 26:395–408

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tobias JD, Schleien C (1991) Granulocyte transfusions--a review for the intensive care physician. Anaesth Intensive Care 19:512–520

    Article  CAS  PubMed  Google Scholar 

  38. Froland SS (1984) Bacterial infections in the compromised host. Scand J Infect Dis Suppl 43:7–16

    CAS  PubMed  Google Scholar 

  39. Bodey GP, Buckley M, Sathe YS et al (1966) Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 64:328–340

    Article  CAS  PubMed  Google Scholar 

  40. Dale DC, Guerry D, Wewerka JR et al (1979) Chronic neutropenia. Medicine (Baltimore) 58:128–144

    Article  CAS  Google Scholar 

  41. Kobayashi SD, Voyich JM, Braughton KR et al (2004) Gene expression profiling provides insight into the pathophysiology of chronic granulomatous disease. J Immunol 172:636–643

    Article  CAS  PubMed  Google Scholar 

  42. Bunting M, Harris ES, McIntyre TM et al (2002) Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving beta 2 integrins and selectin ligands. Curr Opin Hematol 9:30–35

    Article  PubMed  Google Scholar 

  43. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    Article  CAS  PubMed  Google Scholar 

  44. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  45. Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326

    Article  CAS  PubMed  Google Scholar 

  46. Rahman I, Biswas SK, Kode A (2006) Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 533:222–239

    Article  CAS  PubMed  Google Scholar 

  47. Altieri DC (1995) Proteases and protease receptors in modulation of leukocyte effector functions. J Leukoc Biol 58:120–127

    Article  CAS  PubMed  Google Scholar 

  48. Zaidi SH, You XM, Ciura S et al (2002) Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation 105:516–521

    Article  CAS  PubMed  Google Scholar 

  49. Zeiher BG, Matsuoka S, Kawabata K et al (2002) Neutrophil elastase and acute lung injury: prospects for sivelestat and other neutrophil elastase inhibitors as therapeutics. Crit Care Med 30:S281–S287

    Article  CAS  PubMed  Google Scholar 

  50. Ganz T (2004) Antimicrobial polypeptides. J Leukoc Biol 75:34–38

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Quinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Malech, H.L., DeLeo, F.R., Quinn, M.T. (2020). The Role of Neutrophils in the Immune System: An Overview. In: Quinn, M., DeLeo, F. (eds) Neutrophil. Methods in Molecular Biology, vol 2087. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0154-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0154-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0153-2

  • Online ISBN: 978-1-0716-0154-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics