Skip to main content

Abstract

We present accurate methods for the numerical solution of the Boltzmann equation of rarefied gas. The methods are based on a time splitting technique. On the one hand, the transport is solved by a third-order accurate (in space) Positive and Flux Conservative (PFC) method. On the other hand, the collision step is treated by a Fourier approximation of the collision integral, which guarantees spectral accuracy in velocity, coupled with high-order integrators in time preserving stationary states. Several space dependent numerical tests in 2D and 3D illustrate the accuracy and robustness of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babovsky, H.: On a simulation scheme for the Boltzmann equation. Mathematical Methods in the Applied Sciences 8,223–233 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bird, G.A.: Molecular gas dynamics. Clarendon Press, Oxford (1994)

    Google Scholar 

  3. Bobylev, A.V. and Rjasanow, S.: Difference scheme for the Boltzmann equation based on the Fast Fourier Transform. Eur. J. Mech. B/Fluids 16,293–306 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Buet, C: A discrete velocity scheme for the Boltzmann operator of rarefied gas dynamics. Trans. Theo. Stat. Phys. 25,33–60 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canuto, C, Hussaim, M.Y., Quarteroni, A. and Zang, TA.: Spectral methods in fluid dynamics. Springer Verlag, New York (1988)

    Book  MATH  Google Scholar 

  6. Cercignani, C: The Boltzmann equation and its applications. Springer-Verlag, Berlin (1988)

    Book  MATH  Google Scholar 

  7. Filbet, F. and Pareschi, L.: A numerical method for the accurate solution of the Landau- Fokker-Planck equation in the non homogeneous case. J. Comput. Phys. 179,1–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Filbet, F, Sonnendrücker, E. and Bertrand, P.: Conservative Numerical schemes for the Vlasov equation. J. Comput. Phys. 172,166–187 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Filbet, F. and Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Communications 151, 247–266 (2003)

    Article  Google Scholar 

  10. Filbet, F. and Russo, G.: High order numerical methods for the space non homogeneous Boltzmann equation. J. Comput. Phys. 186,457–480 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldstein, D., Sturtevant, B. and Broadwell, J.E.: Investigation of the motion of discrete velocity gases. Rar. Gas. Dynam., Progress in Astronautics and Aeronautics 118 AIAA, Washington (1989)

    Google Scholar 

  12. Inamuro, T. and Sturtevant B.: Numerical study of discrete velocity gases. Phys. Fluids A 12,2196–2203(1990)

    Article  Google Scholar 

  13. Jin, S.: Runge-Kutta methods for hyperbolic systems with stiff relaxation terms. J. Comput. Phys., 122,51–67(1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nanbu, K.: Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent Gases. J. Phys. Soc. Japan 52, 2042–2049 (1983)

    Google Scholar 

  15. Nessyahu, H. and Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87,408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ohwada, T: Higher Order Approximation Methods for the Boltzmann Equation. J. Comput. Phys. 139, 1–14 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pareschi, L: Computational methods and fast algorithms for Boltzmann equations, Chapter 7, Lecture Notes on the discretization of the Boltzmann equation, ed. N.Bellomo, World Scientific, 46 pp. (to appear)

    Google Scholar 

  18. Pareschi, L. and Perthame, B.: A Fourier spectral method for homogeneous Boltzmann equations. Transp. Theo. Stat. Phys. 25, 369–383 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pareschi, L. and Russo, G.: On the stability of spectral methods for the homogeneous Boltzmann equation. Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998). Transport Theory Statist. Phys. 29,431–447(2000)

    Google Scholar 

  20. Pareschi, L. and Russo, G.: Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37, 1217–1245 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pareschi, L. and Russo, G.: Time Relaxed Monte Carlo methods for the Boltzmann equation. SIAM J. Sci. Comp. 23,1253–1273 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pareschi, L.; Toscani, G. and Villani, C: Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit. Numer. Math. 93, no. 3, 527–548 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rogier, F. and Schneider, J.: A direct method for solving the Boltzmann equation. Trans. Theo. Stat. Phys. 23, 313–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor (Editor: A. Quarteroni), Lecture Notes in Mathematics, Springer 1697, 325–432 (1998)

    Google Scholar 

  25. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. Villani, C: A review of mathematical topics in collisional kinetic theory. Handbook of mathematical fluid dynamics 1,71–305, North-Holland, Amsterdam (2002)

    Chapter  Google Scholar 

  27. Whitham, G. B.: Linear and nonlinear waves. Wiley Interscience (1974)

    Google Scholar 

  28. Wild, E: On Boltzmann’s equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc. 47, 602–609, (1951)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Filbet, F., Russo, G. (2004). Accurate numerical methods for the Boltzmann equation. In: Degond, P., Pareschi, L., Russo, G. (eds) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8200-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8200-2_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6487-3

  • Online ISBN: 978-0-8176-8200-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics