Skip to main content

Spectral Structure of Sets of Integers

  • Chapter
Fourier Analysis and Convexity

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Let Ë be a small subset of a finite abelian group, and let R be the set of points at which its Fourier transform is large. A result of Chang states that R has a great deal of additive structure. We give a statement and a proof of this result and discuss some applications of it. Finally, we discuss some related open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ball, K., Convex geometry and functional analysis, in Handbook of the Geometry of Ba-nach Spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 161–194.

    MATH  Google Scholar 

  2. Beckner, W., Inequalities in Fourier analysis, Ann. Math. 102 no. 1 (1975), 159–182.

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Sur le minimum d’une somme de cosinus, Acta Arith. 45, no. 4 (1986), 381–389.

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J., On arithmetic progressions in sums of sets of integers, in A Tribute to Paul Erdós Cambridge University Press, London, 1990.

    Google Scholar 

  5. Chang, M.C., Polynomial bounds for Freimans’s theorem, Duke Math. J. 113 no. 3 (2002), 399–419.

    Article  MathSciNet  Google Scholar 

  6. de Leeuw, K., Katznelson, Y., and Kahane, J.P., Sur les coefficients de Fourier des fonc-tions continues, CR. Acad. Sei. Pans Sér. A-B 285 no. 16 (1977), A1001–A1003.

    Google Scholar 

  7. Green, B.J., Arithmetic progressions in sumsets, GAFA 12 (2002) 584–597.

    MathSciNet  MATH  Google Scholar 

  8. Green, B.J. Finite field models in additive number theory, to appear in Surveys in Combinatorics 2005.

    Google Scholar 

  9. Green, B.J., Some constructions in the inverse spectral theory of cyclic groups, Comb. Prob. Comp. 12 no. 2 (2003), 127–138.

    MathSciNet  MATH  Google Scholar 

  10. Green, B.J.Various unpublished lecture notes1. Large deviation inequalities2. Edinburgh lecture notes on Freiman’s theorem3. Restriction and Kakeya phenomena (Part III course, Cambridge 2002)

    Google Scholar 

  11. Konyagin, S.V., On a problem of Littlewood, Izv. Akad. Nauk. SSSR 45 (1981), 243–265 (in Russian); English trans.:Math. USSR-Izv 18 (1982), 205–225

    Article  Google Scholar 

  12. López, J.M. and Ross, K.A., Sidon Sets Lecture Notes in Pure and Applied Mathematics, Vol. 13, Marcel Dekker, Inc., New York, 1975.

    Google Scholar 

  13. McGehee, O.C., Pigno, L., and Smith, B., Hardy’s inequality and the L1 -norm of expo-nential sums, Ann. Math 113 no. 3 (1981), 613–618

    Article  MathSciNet  Google Scholar 

  14. Nazarov, F.L., The Bang solution of the coefficient problem, Algebra i Analiz. 9, no. 2 (1997), 272–287; English translation in St. Petersburg Math. J. 9 no. 2 (1998), 407–419

    MathSciNet  Google Scholar 

  15. Rudin, W., Fourier Analysis on Groups Wiley 1990 (reprint of the 1962 original)

    Google Scholar 

  16. Ruzsa, I.Z., Arithmetic progressions in sumsets,Acta Arith 60no. 2 (1991), 191–202

    Article  MathSciNet  Google Scholar 

  17. Ruzsa, I.Z., Connections between the uniform distribution of a sequence and its differences, in Topics in Classical Number Theory Vol. I, II (Budapest, 1981), 1419–1443,Colloq. Math. Soc. János Bolyai, 34, North-Holland, Amsterdam, 1984

    Google Scholar 

  18. Ruzsa, I.Z., An analog of Freiman’s theorem in groups, Structure theory of set addition, Ast¨¦risque 258 (1999), 323–326.

    MATH  Google Scholar 

  19. Ruzsa, I.Z., Negative values of cosine sums, Acta Arith 111 (2004),179–186

    Article  MathSciNet  Google Scholar 

  20. Spencer, J., Six standard deviations suffice, Trans. Amer. Math. Soc 289 no. 2 (1985), 679–706

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Green, B. (2004). Spectral Structure of Sets of Integers. In: Brandolini, L., Colzani, L., Travaglini, G., Iosevich, A. (eds) Fourier Analysis and Convexity. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8172-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8172-2_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6474-3

  • Online ISBN: 978-0-8176-8172-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics