Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 271))

Abstract

For any positive integer, we show that the standard self-dual orbifold Kähler structure of the weighted projective surface ℙ1,1,k can be realized as a limit of the Hirzebruch surface F k , equipped with a sequence of Calabi extremal Kähler metrics whose Kähler classes tend to the boundary of the Kähler cone, and that this collapsing process is compatible with the natural toric structures of ℙ1,1,k and F k .

In reference to [25], nontrivial (geometrically) ruled surfaces of genus zero are usually called Hirzebruch surfaces. The first Hirzebruch surface F1 is well-known to be the blow-up of the complex projective plane at one point; more generally, the k-th Hirzebruch surface F k is the blow-up of the weighted projective plane \(\mathbb{P}_k^2 \) of weight k = (1,1,k) at its (unique) singular point, cf., e.g., [19]. The aim of this article is to show that, for any fixed positive integer k, the weighted projective plane \(\mathbb{P}_k^2 \), equipped with its standard self-dual orbifold Kähler metric — cf. Section 1 — can be viewed as a limit of the Hirzebruch surface F k , when the latter is equipped with a sequence of Calabi extremal Kähler metrics whose Kähler classes tend to the boundary of the Kähler cone. Moreover, we show that this limiting — or collapsing — process fits nicely with the natural toric structures of F k and \(\mathbb{P}_k^2 \).

Notice that our construction can be regarded as an illustration of the general weak compactness theorem recently established by X. Chen and B. Weber in [16], cf. also [15].

In order to make this paper reasonably self-contained, we included a somewhat detailed exposition of the Bochner-flat Kähler metrics of weighted projective spaces in general (Section 1), of Calabi extremal Kähler metrics on Hirzebruch surfaces (Section 2), and of their toric structures (Section 3). The limiting process itself is firstly described in the toric setting in Section 3, then, in a more precise formulation — cf. Theorem 2 — in Section 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abreu, K ähler metrics on toric orbifolds, J. Differential Geom. 58 (2001), 151–187.

    MATH  MathSciNet  Google Scholar 

  2. V. Apostolov, D. M. J. Calderbank, P. Gauduchon, The geometry of weakly self-dual Kähler surfaces, Compositio Math. 135, No. 3 (2003), 279–322.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Apostolov, D. M. J. Calderbank, P. Gauduchon, C. W. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry, II: Global classification, J. Differential Geom. 68 (2004), 277–345.

    MATH  MathSciNet  Google Scholar 

  4. V. Apostolov, D. M. J. Calderbank, P. Gauduchon, C. W. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry, III: Extremal metrics and stability, Invent. Math. 173 (2008), 547–601.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Arezzo, F. Pacard and M. Singer, Extremal metrics on blow-ups, arXiv:math.DG/ 0701028v1.

    Google Scholar 

  6. S. Bando and T. Mabuchi, Uniqueness of Einstein Kähler Metrics Modulo Connected Group Actions, Algebraic Geometry, Sendai (1985), 11–40, Adv. Stud. Pure Math. 10, North-Holland, Amsterdam and New York, 1987.

    Google Scholar 

  7. O. Biquard, M étriques kählériennes à courbure scalaire constante: unicité, stabilité, Séminaire Bourbaki, 57 ème année, 2004–2005, no 938, Novembre 2004.

    Google Scholar 

  8. C. Boyer and K. Galicki, Sasakian Geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008.

    MATH  Google Scholar 

  9. R. Bryant, Bochner-Kähler metrics, J. Am. Math. Soc. 14 (2001), 623–715.

    Article  MATH  Google Scholar 

  10. E. Calabi, Extremal Kähler metrics, in Seminar of Differerential Geometry, ed. S. T. Yau, Annals of Mathematics Studies 102, Princeton University Press (1982), 259–290.

    Google Scholar 

  11. E. Calabi, Extremal Kähler metrics, II, in Differential Geometry and Complex Analysis, eds. I. Chavel and H. M. Farkas, Springer-Verlag (1985), 95–114.

    Google Scholar 

  12. X. X. Chen and G. Tian, Uniqueness of extremal Khler metrics, C. R. Math. Acad. Sci. Paris 340, No. 4 (2005), 287–290.

    MATH  MathSciNet  Google Scholar 

  13. X. X. Chen and G. Tian, Partial regularity for homogeneous complex Monge-Ampere equations C. R. Math. Acad. Sci. Paris 340, No. 5 (2005), 337–340.

    MATH  MathSciNet  Google Scholar 

  14. X. X. Chen and G. Tian, Geometry of Kähler metrics and holomorphic foliation by discs, arXiv:math.DG/0507148 v1.

    Google Scholar 

  15. X. X. Chen, C. LeBrun and B. Weber, On conformally Kähler, Einstein manifolds, arXiv:0705.0710.

    Google Scholar 

  16. X. X. Chen and B. Weber, Moduli spaces of critical Riemannian metrics with L n/2-norm curvature bounds, arXiv:0705.4440.

    Google Scholar 

  17. T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bulletin de la S.M.F., tome 116, No. 3 (1988), 315–339.

    MATH  MathSciNet  Google Scholar 

  18. L. David, P. Gauduchon, The Bochner-Flat Geometry of Weighted Projective Spaces, CRM Proceedings and Lecture Notes, Volume 40 (2006), 109–156.

    MathSciNet  Google Scholar 

  19. I. V. Dolgachev, Weighted Projective Varieties, in Group Actions and Vector Fields (Vancouver, B.C., 1981), Lecture Notes in Math. 956, Springer-Verlag (1982), 34–71.

    Google Scholar 

  20. S. K. Donaldson, Scalar curvature and projective embeddings, II, Q. J. Math. 56, No. 3 (2005), 345–356.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. K. Donaldson, Lower bounds on the Calabi functional, J. Differential Geom. 70 (3) (2005), 453–472.

    MATH  MathSciNet  Google Scholar 

  22. P. Gauduchon, Calabi extremal Kähler metrics. (lecture notes in progress).

    Google Scholar 

  23. V. Guillemin, K ähler structures on toric varieties, J. Differential Geom. 40 (1994), no. 2, 285–309.

    MATH  MathSciNet  Google Scholar 

  24. V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian Tn-Spaces, Progress in Mathematics 122, Birkäuser (1994).

    Google Scholar 

  25. F. Hirzebruch, Über eine Klasse von einfachzusammenhängenden komplexen Mannigfaltigkeiten, Math. Ann. 124 (1951), 77–86.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. D. Hwang, On existence of Kähler metrics with constant scalar curvature, Osaka J. Math. 31 (1994), 561–595.

    MATH  MathSciNet  Google Scholar 

  27. A. D. Hwang and M. A. Singer, A momentum construction for circle-invariant Kähler metrics, Trans. Am. Math. Soc. 354 (2002), 2285–2325.

    Article  MATH  MathSciNet  Google Scholar 

  28. E. Lerman, S. Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. AMS, 349 (1997), 4201–4230.

    Article  MATH  MathSciNet  Google Scholar 

  29. T. Mabuchi, Uniqueness of extremal Kähler metrics for an integral Kähler class, Int. J. Math. 15, No. 6 (2004), 531–546.

    Article  MATH  MathSciNet  Google Scholar 

  30. G. Székelyhidi, Extremal metrics and K-stability (Ph.D. thesis), math.AG/0410401 v2 (1 Nov 2005).

    Google Scholar 

  31. G. Székelyhidi, The Calabi functional on a ruled surface, arXiv:math.DG/0703562v1.

    Google Scholar 

  32. C. W. Tønnesen-Friedman, Extremal metrics on minimal ruled surfaces, J. Reine Angew. Math. 502 (1998), 175–197.

    MathSciNet  Google Scholar 

  33. S. M. Webster, On the pseudo-conformal geometry of Kähler manifolds, Math. Z. 157, No. 3, (1977), 265–270.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media LLC

About this chapter

Cite this chapter

Gauduchon, P. (2009). Hirzebruch Surfaces and Weighted Projective Planes. In: Galicki, K., Simanca, S.R. (eds) Riemannian Topology and Geometric Structures on Manifolds. Progress in Mathematics, vol 271. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4743-8_2

Download citation

Publish with us

Policies and ethics