Skip to main content

Microbial Interactions Preventing Fungal Growth on Senescent and Necrotic Aerial Plant Surfaces

  • Chapter
Aerial Plant Surface Microbiology

Abstract

Although there is an extensive literature concerning many aspects of phyllosphere microbial ecology, only a small proportion addresses senescent and necrotic aerial plant tissues. But microbial activity on these surfaces is important, in part because the microflora there can interact with microbes on living plant surfaces (see Köhl and Fokkema, 1994; Fokkema, 1993). Furthermore, a consideration of the environment on senescent or non-living plant surfaces can bring forward, through contrast with the living phyllosphere, general principles of microbial ecology and interactions. In another chapter of this volume, Alan Rayner discusses fungal interactions on bark, a non-living layer of aerial tissue in woody plants. In contrast, this chapter addresses senescent and non-living aerial tissues of herbaceous plants — specifically, the physical and nutritional environment of these surfaces as it affects the microbial community, the microbial interactions that can limit the survival or activity of fungi there, and how these effects are relevant to microbial activity in phyllospheres of living plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abawi, G. S. and Grogan, R. G. 1975, Source of primary inoculum and effects of temperature and moisture on infection of beans by Whetzelinia sclerotiorum. Phytopathology 65:300–309.

    Google Scholar 

  • Adee, E. A. and Pfender, W. F. 1989, The effect of primary inoculum level of Pyrenophora tritici-repentis on tan spot epidemic development in wheat. Phytopathology 79:873–877.

    Google Scholar 

  • Adee, S. R., Pfender, W. F. and Hartnett, D. C. 1990, Competition between Pyrenophora tritici-repentis and Septoria nodorum in the wheat leaf as measured with de Wit replacement series. Phytopathology 80:1177–1182.

    Google Scholar 

  • Andrews, J. H. 1992, Biological control in the phyllosphere. Annu. Rev. Phytopathol. 30:603–635.

    Article  PubMed  CAS  Google Scholar 

  • Atlas, R. M. and Bartha, R. 1993, Microbial Ecology: Fundamentals and Applications. USA: Benjamin-Cummings Publishing Co.

    Google Scholar 

  • Baddeley, M.S. 1971, Biochemical aspects of senescence, pp. 415–429 In: Preece, T.F. and Dickinson, G.H., (eds.) Ecology of Leaf Surface Micro-organisms. London: Academic Press.

    Google Scholar 

  • Beattie, G.A. and Lindow, S.E. 1994, Epiphytic fitness of phytopathogenic bacteria: Physiological adaptations for growth and survival, pp. 1–27 In: Dangl, J.L., (ed.) Current Topics in Microbiology and Immunology, vol. 129. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Biles, C. L. and Hill, J. P. 1988, Effect of Trichoderma harzianum on sporulation of Cochliobolus sativus on excised wheat seedling leaves. Phytopathology 78:656–659.

    Google Scholar 

  • Blakeman, J. P. 1991, Foliar bacterial pathogens: epiphytic growth and interactions on leaves. J. Appl. Bacteriol. Symposium Supplement 70:49S–59S.

    Google Scholar 

  • Blakeman, J. P. and Brodie, I. D. S. 1977, Competition for nutrients between epiphytic microorganisms and germination of spores of plant pathogens on beetroot leaves. Physiol. Plant Pathol. 10:29–42.

    Article  CAS  Google Scholar 

  • Boland, G. J. and Inglis, G. D. 1989, Antagonism of white mold (Sclerotinia sclerotiorum) of bean by fungi from bean and rapeseed flowers. Can. J. Bot. 67:1775–1781.

    Google Scholar 

  • Burrage, S.W. 1976, Aerial microclimate around plant surfaces, pp. 173–184 In: Dickinson, C.H. and Preece, T.F., (eds.) Microbiology of Aerial Plant Surfaces. London: Academic Press.

    Google Scholar 

  • Chakraborty, B. N., Chakraborty, U. and Basu, K. 1994, Antagonism of Erwinia herbicola towards Leptosphaeria maculans causing blackleg disease of Brassica napus. Letters in Appl. Microbiol. 18:74–76.

    Google Scholar 

  • Cherif, M. and Benhamou, N. 1990, Cytochemical aspects of chitin breakdown during the parasitic action of a Trichoderma sp. on Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 80:1406–1414.

    CAS  Google Scholar 

  • Chernin, L., Ismailov, Z., Haran, S. and Chet, I. 1995, Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 61(5):1720–1726.

    PubMed  CAS  Google Scholar 

  • Corbell, N. and Loper, J. E. 1995, A global regulator of secondary metabolite production in Pseudomonas fluorescens strain Pf-5. J. Bacteriol. 177:6230–6236.

    PubMed  CAS  Google Scholar 

  • Cullen, D. and Andrews, J.H. 1984, Epiphytic microbes as biological control agents, pp. 381–399 In: Kosuge, T. and Nestler, E.W., (eds.) Plant-microbe Interactions. New York: MacMillan Publishing Company.

    Google Scholar 

  • Di Pietro, A., Lorito, M., Hayes, C. K., Broadway, R. M. and Harman, G. E. 1993, Endochitinase from Gliocladium virens: isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308–313.

    Article  Google Scholar 

  • Dickinson, C. H. 1967, Fungal colonization of Pisum leaves. Can. J. Bot. 45:915

    Google Scholar 

  • Dik, A. J., Fokkema, N. J. and van Pelt, J. A. 1992, Influence of climatic and nutritional factors on yeast population dynamics in the phyllosphere of wheat. Microb. Ecol. 23:41–52.

    Article  Google Scholar 

  • Elad, Y., Köhl, J. and Fokkema, N. J. 1994, Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology 84:1193–1200.

    Article  Google Scholar 

  • Fernandes, J. M. C., Sutton, J. C. and James, T. D. W. 1991, A sensor for monitoring moisture of wheat residues: Application in ascospore maturation of Pyrenophora tritici-repentis. Plant Dis. 75:1101–1105.

    Article  Google Scholar 

  • Fiala, V., Glad, C., Martin, M., Jolivet, E. and Derridj, S. 1990. Occurrence of soluble carbohydrates on the phylloplane of maize (Zea mays L.): variations in relation to leaf heterogeneity and position on the plant. New Phytol. 115:609–615.

    Article  CAS  Google Scholar 

  • Fokkema, N. J. 1993, Opportunities and problems of control of foliar pathogens with micro-organisms. Pestic. Sci. 37:411–416.

    Article  Google Scholar 

  • Haran, S., Schickler, H., Oppenheim, A. and Chet, I. 1995, New components of the chitinolytic system of Trichoderma harzianum. Mycol. Res. 99(4):441–446.

    CAS  Google Scholar 

  • Hengge-Aronis, R. 1993, Survival of hunger and stress: The role of rpoS in early stationary phase gene regulation in E. coli. Cell 72:165–168.

    Article  PubMed  CAS  Google Scholar 

  • Heye, C. C. and Andrews, J. H. 1983, Antagonism of Athelia bombacina and Chaetomium globosum to the apple scab pathogen, Venturia inaequalis. Phytopathology 73:650–654.

    Google Scholar 

  • Howell, C. R. and Stipanovic, R. D. 1980, Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715.

    CAS  Google Scholar 

  • Hrabak, E. M. and Willis, D. K. 1992, The lemA required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J. Bacteriol. 174:3011–3020.

    PubMed  CAS  Google Scholar 

  • Hudson, H. J. 1968, The ecology of fungi on plant remains above the soil. New Phytol. 67:837–874.

    Article  Google Scholar 

  • Hudson, H. J., Webster, J. 1958, Succession of fungi on decaying stems of Agropyron repens. Trans. Brit. Mycol. Soc. 41:165–177.

    Google Scholar 

  • James, T. D. W., Sutton, J. C. and Rowell, P. M. 1984, Monitoring wetness of dead onion leaves in relation to Botrytis leaf blight. Proc. British Crop Protection Conference 2:627–632.

    Google Scholar 

  • Kempf, H. J. and Wolf, G. 1989, Erwinia herbicola as a biocontrol agent of Fusarium culmorum and Puccinia recondita f. sp. tritici on wheat. Phytopathology 79:990–994.

    Google Scholar 

  • Kinkel, L. 1991, Fungal community dynamics, pp. 253–270 In: Andrews, J.H. and Hirano, S.S., (eds.) Microbial Ecology of Leaves. New York: Springer-Verlag.

    Google Scholar 

  • Köhl, J. and Fokkema, N.J. 1994, Fungal interactions on living and necrotic leaves, pp. 321–334 In: Blakeman, J.P. and Williamson, B., (eds.) Ecology of Plant Pathogens., Oxon, UK: CAB International.

    Google Scholar 

  • Köhl, J., Molhoek, W. M. L., van der Plas, C. H. and Fokkema, N. J. 1995, Suppression of sporulation of Botrytis spp. as a valid biocontrol strategy. Eur. J. Plant Pathol. 101:251–259.

    Article  Google Scholar 

  • Köhl, J., Molhoek, W. M. L., van der Plas, C. H. and Fokkema, N. J. 1995, Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions. Phytopathology 85:393–401.

    Article  Google Scholar 

  • Köhl, J., van der Plas, C. H., Molhoek, W. M. L. and Fokkema, N. J. 1995, Effect of interrupted leaf wetness periods on suppression of sporulation of Botrytis allii and B. cinerea by antagonists on dead onion leaves. Eur. J. Plant Pathol. 101:627–637.

    Article  Google Scholar 

  • Kolattukudy, P. E., Rogers, L. M., Li, D., Hwang, C., and Flaishman, M. A. 1995, Surface signalling in pathogenesis. Proc. Nat. Acad. Sci. USA 92:4080–4087.

    Article  PubMed  CAS  Google Scholar 

  • Lorito, M., Di Pietro, A., Hayes, C. K., Woo, S. L. and Harman, G. E. 1993, Antifungal, synergistic interaction between chitinolytic enzymes from Trichoderma harzianum and Enterobacter cloacae. Phytopathology 83:721–728.

    Article  CAS  Google Scholar 

  • Lorito, M., Hayes, C. K., Di Pietro, A., Woo, S. L. and Harman, G. E. 1994, Purification, characterization, and synergistic activity of a glucan 1,3-ß-glucosidase and an N-Acetyl-ß-Glucosaminidase from Trichoderma harzianum. Phytopathology 84:398–405.

    Article  CAS  Google Scholar 

  • Magan, N. and Lacey, J. 1984, Effect of water activity, temperature and substrate on interactions between field and storage fungi. Trans. Brit. Mycol. Soc. 82:83–93.

    Article  Google Scholar 

  • Mercier, J. and Reeleder, R. D. 1987, Interactions between Sclerotinia sclerotiorum and other fungi on the phylloplane of lettuce. Can. J. Bot. 65:1633–1637.

    Google Scholar 

  • Morgan, J. V. and Tukey, H. B. 1964, Characterization of leachate from plant foliage. Plant Physiol. 39:590–593.

    PubMed  CAS  Google Scholar 

  • Nowak-Thompson, B. and Gould, S. J. 1994, Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can. J. Microbiol. 40:1064–1066.

    Article  CAS  Google Scholar 

  • Peng, G., Sutton, J. C. 1991, Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Can J. Plant Pathol. 13:247–257.

    Article  Google Scholar 

  • Pfender, W. F. 1988, Suppression of ascocarp formation in Pyrenophora tritici-repentis by Limonomyces roseipellis, a basidiomycete from reduced-tillage wheat straw. Phytopathology 78:1254–1258.

    Google Scholar 

  • Pfender, W. F., King, L. G. and Rabe, J. R. 1991, Use of dual-stain fluorescence microscopy to observe antagonism of Pyrenophora tritici-repentis by Limonomyces roseipellis in wheat straw. Phytopathology 81:109–112.

    CAS  Google Scholar 

  • Pfender, W. F., Kraus, J. and Loper, J. E. 1993, A genomic region from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repentis in wheat straw. Phytopathology 83:1223–1228.

    Article  CAS  Google Scholar 

  • Pfender, W. F., Sharma, U. and Zhang, W. 1991, Effect of water potential on microbial antagonism to Pyrenophora tritici-repentis in wheat residue. Mycol. Res. 95:308–314.

    Article  Google Scholar 

  • Pfender, W. F. and Wootke, S. L. 1988, Microbial communities of Pyrenophora-infested wheat straw as examined by multivariate analysis. Microb. Ecol. 15:95–113.

    Article  Google Scholar 

  • Pfender, W. F., Zhang, W. and Nus, A. 1993, Biological control to reduce inoculum of the tan spot pathogen Pyrenophora tritici-repentis in surface-borne residues of wheat fields. Phytopathology 83:371–375.

    Article  Google Scholar 

  • Powelson, R. L. 1960, Initiation of strawberry fruit rot caused by Botrytis cinerea. Phytopathology 50:491–494.

    Google Scholar 

  • Sarniguet, A., Kraus, J., Henkels, M.D., Muelchen, A.M. and Loper, J.E. 1995, An rpoS homolog affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc. Nat. Acad. Sci. USA 92:12255–12259.

    Article  PubMed  CAS  Google Scholar 

  • Shapira, R., Ordentlich, A., Chet, I. and Oppenheim, A. B. 1989, Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79:1246–1249.

    CAS  Google Scholar 

  • Silvertown, J.W. 1982, Interactions in mixtures of species, pp. 147–165 In: Silvertown, J.W. Introduction to Plant Population Ecology. New York: Longman.

    Google Scholar 

  • Sitepu, D. and Wallace, H. R. 1984, Biological control of Sclerotinia sclerotiorum in lettuce by Fusarium lateritium. Aust. J. Exp. Agric. Anim. Husb. 24:272–276.

    Article  Google Scholar 

  • Sutton, J. C. 1990, Epidemiology and management of botrytis leaf blight of onion and gray mold of strawberry: a comparative analysis. Can. J. Plant Pathol. 12:100–110.

    Article  Google Scholar 

  • Sutton, J. C. and Peng, G. 1993, Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83:615–621.

    Article  Google Scholar 

  • Tronsmo, A. 1992, Leaf and blossom epiphytes and endophytes as biological control agents, pp. 43–54 In: Tjamos, E.S. (ed.) Biological Control of Plant Diseases. New York: Plenum Press.

    Google Scholar 

  • Wicklow, D.T. 1992, Interference competition, pp. 265–274 In: Carroll, G.C. and Wicklow, D.T (eds.) The Fungal Community: Its Organization and Role in the Ecosystem. 2nd ed. New York: Marcel Dekker, vol. 15.

    Google Scholar 

  • Wilhite, S. E., Lumsden, R. D. and Straney, D. C. 1994, Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off. Phytopathology 84:816–821.

    Article  CAS  Google Scholar 

  • Wilson, M., Savka, M. A., Hwang, I., Farrand, K. and Lindow, S. E. 1995, Altered epiphytic colonization of mannityl opine-producing transgenic tobacco plants by a mannityl opine-catabolizing strain of Pseudomonas syringae. Appl. Environ. Microbiol. 61:2151–2158.

    PubMed  CAS  Google Scholar 

  • Yuen, G. Y., Craig, M. L., Kerr, E. D. and Steadman, J. R. 1994, Influences of antagonist population levels, blossom development stage, and canopy temperature on the inhibition of Sclerotinia sclerotiorum on dry edible bean by Erwinia herbicola. Phytopathology 84:495–501.

    Article  Google Scholar 

  • Zhang, W. and Pfender, W. F. 1992, Effect of residue management on wetness duration and ascocarp production by Pyrenophora tritici-repentis in wheat residue. Phytopathology 82:1434–1439.

    Google Scholar 

  • Zhang, W. and Pfender, W. F. 1993, Effect of wetting-period duration on ascocarp suppression by selected antagonistic fungi in wheat straw infested with Pyrenophora tritici-repentis. Phytopathology 83:1288–1293.

    Article  Google Scholar 

  • Zhou, T. and Reeleder, R. D. 1989, Application of Epicoccum purpurascens spores to control white mold of snap bean. Plant Dis. 73:639–642.

    Article  Google Scholar 

  • Zhou, T. and Reeleder, R. D. 1991, Colonization of bean flowers by Epicoccum purpurascens. Phytopathology 81:774–778.

    Google Scholar 

  • Zhou, T., Reeleder, R. D. and Sparace, S. A. 1991, Interactions between Sclerotinia sclerotiorum and Epicoccum purpurascens. Can. J. Bot. 69:2503–2510.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Pfender, W.F. (1996). Microbial Interactions Preventing Fungal Growth on Senescent and Necrotic Aerial Plant Surfaces. In: Morris, C.E., Nicot, P.C., Nguyen-The, C. (eds) Aerial Plant Surface Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-34164-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-34164-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45382-3

  • Online ISBN: 978-0-585-34164-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics