Skip to main content

The Effect of Leaf Age and Position on the Dynamics of Microbial Populations on Aerial Plant Surfaces

  • Chapter
Aerial Plant Surface Microbiology

Abstract

Epiphytic microbial communities of terrestrial plants are non uniformly distributed in space and in time on leaf surfaces. The size and composition of microbial populations vary under the influence of biotic and abiotic factors related to the micro-organisms themselves (traits conferring epiphytic fitness, nutritional resource utilisation, abilities to compete for space, resistance or production of toxic compounds), to the host (its genotype, the age and the position of the leaves), and to the environmental conditions (micro- and macro-climate, activity of vectors and pathogens, application of pesticides and other chemicals). Moreover, the microbial population dynamics results from four processes -immigration, emigration, multiplication and death of cells as discussed in a previous chapter (Lindow, this volume) — which are under the influence of the previously mentioned factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agrios, G.N. 1988, Plant pathology, 3rd edition, Academic Press, San Diego, CA.

    Google Scholar 

  • Akit, J., Cooper, D.G., Mannien, K.I. and Zajic, J.E. 1981, Investigation of potential biosurfactant production among phytopathogenic corynebacteria and related microbes, Curr. Microbiol. 6:145–150.

    Article  CAS  Google Scholar 

  • Allen, E.A., Hoch, H.C., Steadman, J.R. and Stavely, R.J. 1991, Influence of leaf features on spore deposition and the epiphytic growth of phytopathogenic fungi, pp. 87–110 In: Andrews, J.H. and Hirano, S.S. (eds.) Microbial Ecology of Leaves, Springer Verlag New York Inc.

    Google Scholar 

  • Andrews, J.H., Kenerley, C.M. and Nordheim, E.V. 1980, Positional variation in phylloplane microbial populations within an apple tree canopy, Microb. Ecol. 7:71–84.

    Article  Google Scholar 

  • Aylor, D.E. 1995, Vertical variation of aerial concentration of Venturia inequalis ascospores in an apple orchard, Phytopathology 85:175–181.

    Article  Google Scholar 

  • Blakeman, J.P. 1985, Ecological succession of leaf surface microorganisms in relation to biological control, pp. 6–30 In: Windels, C.E. and Lindow, S.E. (eds.) Biological Control on the Phylloplane, American Phytopathological Society, St Paul MN.

    Google Scholar 

  • Bernstein, M.E. and Carroll, G.E. 1977, Microbial populations on Douglas fir needle surfaces, Microb. Ecol. 4:41–52.

    Article  Google Scholar 

  • Blaker, T.W. and Greyson, R.I. 1987, Developmental variation of leaf surface wax of maize, Zea mays, Can. J. Bot. 66:839–846.

    Google Scholar 

  • Bunster, L., Fokkema, N. J. and Schippers, B. 1989, Effect of surface active Pseudomonas spp. on leaf wetability, Appl. Environ. Microbiol. 55:1340–1345.

    PubMed  CAS  Google Scholar 

  • Burrage, S.W. 1971, The micro-climate at the leaf surface, pp. 91–101 In: Preece, T.F. and Dickinson, C.H. (eds.) Ecology of Leaf Surface Micro-organisms, Academic Press London.

    Google Scholar 

  • Chandrashekar, M. and Halloran, G.M. 1992, Leaf scerch (Kabatiella caulivora (Kirch.) Kirk.) of subterranean clover (Trifolium subterraneum L.): influence of host cultivar, growth stage and pathogen isolates on the disease severity, Euphytica 61:181–186.

    Article  Google Scholar 

  • de Leij, F.A.A.M., Sutton, E., Whipps, J.M., Fenlon, J.S. and Lynch, J.M. 1995, Field release of a genetically modified Pseudomonas fluorescens on wheat: establishment, survival and dissemination, Biotechnology 13:1488–1492.

    Article  Google Scholar 

  • Dickinson, C.H. 1976, Fungi on the aerial surfaces of higher plants, pp. 293–324 In: Dickinson, C.H. and Preece, T.F. (eds.) Microbiology of Aerial Plant Surfaces, Academic Press London.

    Google Scholar 

  • Dickinson, C.H., Austin, B. and Goodfellow, M. 1975, Quantitative and qualitative studies of phylloplane bacteria from Lollium perenne, J. Gen. Microbiol. 91:157–166.

    Google Scholar 

  • Emery, K.M. and English, J.T. 1994, Development of foliar diseases of alfalfa in relation to microclimate, host growth and fertility, Phytopathology 84:1263–1269.

    Article  Google Scholar 

  • Ercolani, G.L. 1976, Bacteriological quality assessment of fresh marketed lettuce and fennel, Appl. Environ. Microbiol. 31:847–852.

    PubMed  CAS  Google Scholar 

  • Ercolani, G.L. 1979, Distribuzione di Pseudomonas savastanoi sulle foglie dell’olivo, Phytopath. Medit. 18:85–88.

    Google Scholar 

  • Ercolani, G.L. 1991, Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time, Microb. Ecol. 21:35–48.

    Article  Google Scholar 

  • Fiala, V., Derridj, S. and Jolivet, E. 1985, Influence de la teneur en glucides solubles des feuilles de Zea mays L. sur le choix du site de ponte de la pyrale, Ostrinia nubilalis Hbn. (Lepid. Pyralidae), Agronomie 5:927–932.

    Article  Google Scholar 

  • Fiala, V., Glad, C., Martin, M., Jolivet, E. and Derridj, S. 1990, Occurrence of soluble carbohydrates on the phylloplanes of maize (Zea mays L.): variations in relation to leaf heterogeneity and position on the plant, New Phytol. 115:609–615.

    Article  CAS  Google Scholar 

  • Fitt, B.D.L., McCartney, H.A. and Walkate, P.J. 1989, The role of rain in dispersal of pathogen inoculum, Annu. Rev. Phytopathol. 27:241–270.

    Article  Google Scholar 

  • Forster, G.F. 1977, Effect of leaf surface wax on the deposition of airborne propagules, Trans. Brit. Mycol. Soc. 68:245–250.

    Article  Google Scholar 

  • Fryda, S.J. and Otta, J.D. 1978, Epiphytic movment and survival of Pseudomonas syringae on spring wheat, Phytopathology 98:1064–1067.

    Google Scholar 

  • Geeson, J.D. 1979, The fungal and bacterial flora of stored white cabbage, J. Appl. Bacteriol. 46:189–193.

    PubMed  CAS  Google Scholar 

  • Graham, D.C. and Harrison, M.D. 1975, Potential spread of Erwinia spp. in aerosols, Phytopathology 65:739–741.

    Google Scholar 

  • Hallam, N.D. and Juniper, B.E. 1971, The anatomy of the leaf surface, pp. 3–37 In: Preece, T.F. and Dickinson, C.H. (eds) Ecology of Leaf Surface Micro-organisms, Academic Press London.

    Google Scholar 

  • Hildebrand, P.D. 1989, Surfactant-like characteristics and identity of bacteria associated with broccoli rot in atlantic Canada, Can. J. Plant Pathol. 11:205–214.

    Article  Google Scholar 

  • Hirano, S.S. and Upper, C.D. 1989, Diel variation in population size and ice nucleation activity of Pseudomonas syringae on snap bean leaflets, Appl. Environ. Microbiol. 55:623–630.

    PubMed  CAS  Google Scholar 

  • Hirano, S.S. and Upper, C.D. 1991, Bacterial community dynamics, pp. 271–294 In: Andrews, J.H. and Hirano, S.S. (eds.) Microbial Ecology of Leaves, Springer Verlag New York Inc.

    Google Scholar 

  • Hirano, S.S. and Upper, C.D. 1992, Population dynamics of Pseudomonas syringae in the phyllosphere, pp. 21–29 In: Galli, E., Silver S. and Witholdt, B., (eds.) Pseudomonas: Molecular Biology and Biotechnology, ASM Washington, DC.

    Google Scholar 

  • Hirano, S.S., Nordheim, E.V., Arny, D.C. and Upper, C.D. 1982, Lognormal distribution of epiphytic bacteria populations on leaf surfaces, Appl. Environ. Microbiol. 44:695–700.

    PubMed  CAS  Google Scholar 

  • Hirano, S.S., Clayton, M.K. and Upper, C.D. 1994, Estimation of and temporal changes in means and variances of populations of Pseudomonas syringae on snap bean leaflets, Phytopathology 84:934–940.

    Article  Google Scholar 

  • Inglis, G.D., Goettel, M.S. and Johnson, D.L. 1993, Persistence of the entomopathogenic fungus, Beauveria bassiana, on phylloplanes of crested wheatgrass and alfalfa, Biol. Control 3:258–270.

    Article  Google Scholar 

  • Ishimaru, C., Eskridge, K.M. and Vidaver, A.K. 1991, Distribution analysis of naturally occurring epiphytic population of Xanthomonas campestris pv. phaseoli on dry beans, Phytopathology 81:262–268.

    Google Scholar 

  • Jacques, M.-A. and Morris, C.E. 1995a, Bacterial population dynamics and decay on leaves of different ages of ready-to-use broad-leaved endive, Int. J. Food Sci. Technol. 30:221–236.

    Google Scholar 

  • Jacques, M.-A. and Morris, C.E. 1995b, MiniReview: issues related to the quantification of bacteria from the phyllosphere, FEMS Microbiol. Ecol. 18:1–14.

    Article  CAS  Google Scholar 

  • Jacques, M.-A., Kinkel, L.L. and Morris, C.E. 1995, Population sizes, immigration and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia), Appl. Environ. Microbiol. 61:899–906.

    PubMed  CAS  Google Scholar 

  • Johnson, K.B., Stockwell, V.O., Burgett, D.M., Sugar, D. and Loper, J.E. 1993, Dispersal of Erwinia amylovora and Pseudomonas fluorescens by honey bees from hives to apple and pear blossoms, Phytopathology 83:473–484.

    Article  Google Scholar 

  • Jones, J.B., Chase, A.R., Harbaugh, B.K. and Raju, B.C. 1985, Effect of leaf wetness, fertilizer rate, leaf age and light intensity before inoculation on bacterial leaf spot of chrysanthemum, Plant Dis. 69:782–784.

    Google Scholar 

  • Juniper, B.E 1991, The leaf from the inside and the outside: a microbe’s point of view, pp. 21–42 In: Andrews, J.H. and Hirano, S.S. (eds.) Microbial Ecology of Leaves, Springer Verlag New York Inc.

    Google Scholar 

  • Juniper, B.E., and Jeffree, C.E. 1983, Plant surfaces, Edward Arnold, London. 93 p.

    Google Scholar 

  • Kinkel, L.L. 1991, Fungal community dynamics, pp. 253–570 In: Andrews, J.H. and Hirano, S.S. (eds.) Microbial Ecology of Leaves, Springer Verlag New York Inc.

    Google Scholar 

  • Kinkel, L.L. 1992, Statistical consequences of combining population samples, Phytopathology 82:1168.

    Google Scholar 

  • Kinkel, L.L., Wilson, M. and Lindow, S.E. 1995, Effects of scale on estimates of epiphytic bacterial populations. Microbial Ecol. 29:283–297.

    Article  Google Scholar 

  • Koch, M.F. and Mew, T.W. 1991, Effect of plant age and leaf maturity on the quantitative resistance of rice cultivars to Xanthomonas campestris pv. oryzae, Plant Dis. 75:901–904.

    Article  Google Scholar 

  • Leben, C. 1961, Microorganisms of cucumber seedlings, Phytopathology 51:553–557.

    Google Scholar 

  • Leben, C. 1988, Relative humidity and the survival of epiphytic bacteria with buds and leaves of cucumber plants, Phytopathology 78:179–185.

    Google Scholar 

  • Legard, D.E., McQuilken, M.P., Whipps, J.M., Fenlon, J.S., Fermor, T.R., Thompson, I.P., Bailey, M.J. and Lynch, J.M. 1994, Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganisms, Agric. Ecosys. Environ. 50:87–101.

    Article  Google Scholar 

  • Lindemann, J., Constantinidou, W.R., Barchet, W.R. and Upper, C.D. 1982, Plants as sources of airborne bacteria, including ice nucleation-active bacteria, Appl. Environ. Microbiol. 44:1059–1063.

    PubMed  CAS  Google Scholar 

  • Lindemann, J. and Upper, C.D. 1985, Aerial dispersal of epiphytic bacteria over bean plants, Appl. Environ. Microbiol. 50:1229–1232.

    PubMed  CAS  Google Scholar 

  • Lindow, S.E. 1994, The role of immigration in establishment of epiphytic bacterial populations and practical implications, Mole. Ecol. 3:614.

    Google Scholar 

  • McCartney, H.A. and Butterworth, J. 1992, Effects of humidity on the dispersal of Pseudomonas syringae from leaves by water splash, Microb. Releases 1:187–190.

    Google Scholar 

  • Mew, T.W. and Kennedy, B.W. 1982, Seasonal variation in populations of pathogenic pseudomonads on soyabean leaves, Phytopathology 72:103–105.

    Google Scholar 

  • Morris, C.E. 1985, Diversity of epiphytic bacteria on snap bean leaflets based on nutrient utilization abilities: biological and statistical considerations, Ph D Thesis, University of Madison Wisconsin.

    Google Scholar 

  • Morris, C.E. and Lucotte, T. 1993, Dynamics and variability of bacterial population density on leaves of field-grown endive destined for ready-to-use processing, Int. J. Food Sci. Technol. 28:201–209.

    Google Scholar 

  • Morris, C.E. and Rouse, D.I. 1985, Role of nutrients in regulating epiphytic bacterial populations, pp. 63–82 In: Windels, C.E. and Lindow, S.E. (eds.) Biological Control on the Phylloplane, American Phytopathological Society, St Paul, MN.

    Google Scholar 

  • Morris, C.E., Jacques, M.-A. and Nicot, P.C. 1994, Microbial aggregates on leaf surfaces: characterization and implications for the ecology of epiphytic bacteria, Mole. Ecol. 6:613.

    Google Scholar 

  • Pedersen, E.A. and Morrall, R.A.A. 1994, Effects of cultivar, leaf wetness duration, temperature and growth stage on infection and development of ascochyta blight of lentil, Phytopathology 84:1024–1030.

    Article  Google Scholar 

  • Pelletier, J.R. and Fry, W.E. 1990, Characterization of resistance to early blight in three potato cultivars: receptivity, Phytopathology 80:361–366.

    Google Scholar 

  • Périssol, C., Roux, M. and Le Petit, J. 1993, Succession of bacteria attached to evergreen oak leaf surfaces, Eur. J. Soil Biol. 29:167–176.

    Google Scholar 

  • Oliveira, J.R., Romeiro, R.S. and Muchovej, J.J. 1991, Population tendencies of Pseudomonas cichorii and P. syringae pv. garcae in young and mature coffee leaves, J. Phytopathol. 131:210–214.

    Google Scholar 

  • Pieczarka, D.J. and Lorbeer, J.W. 1975, Micro-organisms associated with bottom rot of lettuce grown in organic soil in new York state, Phytopathology 65:16–21.

    Google Scholar 

  • Plummer, R.M., Hall, R.L. and Watt, T.A. 1992, Effect of leaf age and nitrogen fertilisation on sporulation of crown rust (Puccinia coronata var. lolii) on perennial ryegrass (Lollium perenne L.), Ann. Appl. Biol. 121:51–56.

    Article  Google Scholar 

  • Roumen, E.C. 1992, Effect of leaf age on components of partial resistance in rice to leaf blast, Euphytica 63:271–279.

    Google Scholar 

  • Roumen, E.C., Bonman, J.M. and Parlevliet, J.E. 1992, Leaf age related partial resistance to Pyricularia oryzae in tropical lowland rice cultivars as measured by the number of sporulating lesions, Phytopathology 82:1414–1417.

    Google Scholar 

  • Rouse, D.I., Nordheim, E.V., Hirano, S.S. and Upper, C.D. 1985, A model relating the probability of foliar disease incidence to the population frequencies of bacterial plant pathogens, Phytopathology 75:505–509

    Google Scholar 

  • Ruinen, J. 1961, The phyllosphere. I. An ecologically neglected milieu, Plant Soil 15:81–109.

    Article  Google Scholar 

  • Savary, S. and van Santen, G. 1992, Effect of crop age on primary gradients of late leaf spot (Cercosporidium personatum) on groundnut, Plant Pathol. 41:265–273.

    Article  Google Scholar 

  • Stout, J.D. 1960, Bacteria of soil and pasture leaves at Claudlands showgrounds, New Zeal. J. Agric. Res. 3:413–430.

    Google Scholar 

  • Suparyono and Pataky, J.K. 1989, Influence of host resistance and growth stage at the time of inoculation on Stewart’s wilt and Goss’s wilt development and sweet corn hybrid yield, Plant Dis. 73:339–345.

    Article  Google Scholar 

  • Tiedemann, A.V. and Firsching, K.H. 1993, Effects of ozone exposure and leaf age of wheat on infection processes of Septoria nodorum Berk., Plant Pathol. 42:287–293.

    Article  CAS  Google Scholar 

  • Thompson, I.P., Bailey, M.J., Fenlon, J.S., Fermor, T.R., Lilley, A.K., Lynch, J.M., McCormack, P.J., McQuilken, M.P., Purdy, K.J., Rainey, P.B. and Whipps, J.M. 1993, Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris), Plant Soil 150:177–191.

    Article  Google Scholar 

  • Thompson, I.P., Ellis, R.J. and Bailey, M.J. 1995a, Autecology of a genetically modified fluorescent pseudomonad on sugar beet, FEMS Microbiol. Ecol. 17:1–14.

    Article  CAS  Google Scholar 

  • Thompson, I.P., Lilley, A.K., Ellis, R.J., Bramwell, P.A. and Bailey, M.J. 1995b, Survival, colonisation and dispersal of genetically modified Pseudomonas fluorescens SBW25 in the phytosphere of field grown sugar beet, Biotechnology 13:1493–1497.

    Article  CAS  Google Scholar 

  • Tukey, H.B., Jr. 1966, Leaching of metabolites from above-ground plant parts and its implication, Bull. Torrey Bot. Club 93:385–401.

    Article  CAS  Google Scholar 

  • Tukey, H.B., Jr. 1971, Leaching of substances from plants, pp. 67–80 In: Preece, T.F. and Dickinson, C.H. (eds.) Ecology of Leaf Surface Micro-organisms, Academic Press London.

    Google Scholar 

  • van Outryve, M.F., Gosselé, F. and Swings, J. 1989, The bacterial microflora of witloof cichory (Cichorium intybus L. var. foliosum Hegi) leaves, Microb. Ecol. 18:175–186.

    Article  Google Scholar 

  • Venette, J.R. and Kenedy, B.W. 1975, Naturally produced aerosols of Pseudomonas glycinea, Phytopathology 65:737–738.

    Google Scholar 

  • Weller, D.M. and Saetler, A.W. 1980, Colonization and distribution of Xanthomonas phaseoli and Xanthomonas phaseoli var. fuscans in field-grown navy beans, Phytopathology 70:500–506.

    Article  Google Scholar 

  • Wildman, H.G. and Parkinson, D. 1979, Microfungal succession on living leaves of Populus tremoides, Can. J. Bot. 57:2800–2811.

    Google Scholar 

  • Wyatt, S.E., Pan, S.Q. and Kúc, J. 1991, β-1,3-glucanase, chitinase and peroxidase activities in tobacco tissues resistant and susceptible to blue mould as related to flowering, age and sucker development, Physiol. Mole. Plant Pathol. 39:433–440.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Jacques, MA. (1996). The Effect of Leaf Age and Position on the Dynamics of Microbial Populations on Aerial Plant Surfaces. In: Morris, C.E., Nicot, P.C., Nguyen-The, C. (eds) Aerial Plant Surface Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-34164-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-34164-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45382-3

  • Online ISBN: 978-0-585-34164-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics