Skip to main content

Role of Immigration and Other Processes in Determining Epiphytic Bacterial Populations

Implications for Disease Management

  • Chapter
Aerial Plant Surface Microbiology

Abstract

Conceptually, there are 4 major processes that can influence the size and composition of bacterial populations on leaves. Bacterial population sizes on a leaf can increase by both multiplication on that leaf as well as by immigration of bacteria from other leaves. In contrast, both the death of bacterial cells and their migration from a leaf can contribute to decreases in population size. It appears that most workers have assumed that growth and death of bacteria are the predominant processes that determine population sizes. These processes are obviously much more easy to study than immigration and emigration since they can be done in isolation in the laboratory or greenhouse. For example, the study of the multiplication of bacteria on plants can be easily studied by inoculating plants that are isolated from other plants in incubation chambers; increases in population size are directly attributable to multiplication of the bacteria. In contrast, studies of the importance of immigration of bacteria to the population sizes of bacteria on a leaf require a source of immigrant bacteria and that conditions facilitating immigration be maintained. Since the conditions which favour the immigration of bacteria to plants are not yet well understood, such studies must be done under field conditions. They therefore face the complications of variable environmental conditions which make the experiments difficult to reproduce. For this reason, most information relevant to understanding processes that occur on plants are inferences made from simple field or laboratory observations. Most observations have not been sufficiently detailed to partition the many factors that can influence epiphytic bacterial populations. To date, there have been few studies designed to understand the processes that contribute to epiphytic bacterial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, G.L., Menkissoglu, O. and Lindow, S.E. 1991, Occurrence and properties of copper-tolerant strains of Pseudomonas syringae isolated from fruit trees in California, Phytopathology 81:648–656.

    CAS  Google Scholar 

  • Andrews, J.H., Kinkel, L.L., Berbee, F.M. and Nordheim, E.V. 1987, Fungi, leaves and the theory of island biogeography, Microb. Ecol. 14:277–290.

    Article  Google Scholar 

  • Bashan, Y., Sharon, E., Okon, Y. and Henis, Y. 1981, Scanning electron and light microscopy of infection and symptom development in tomato leaves infected with Pseudomonas tomato, Physiol. Plant Pathol. 19:139–144.

    Google Scholar 

  • Beattie, G.A. and Lindow, S.E. 1995, The secret life of foliar bacterial pathogens on leaves, Annu. Rev. Phytopathol. 33:145–172.

    Article  CAS  PubMed  Google Scholar 

  • Beattie, G.A. and Lindow, S.E. 1994a, Survival, growth and localization of epiphytic fitness mutants of Pseudomonas syringae on leaves, Appl. Environ. Microbiol. 60:3790–3798.

    PubMed  CAS  Google Scholar 

  • Beattie, G.A. and Lindow, S.E. 1994b, Comparison of the behavior of epiphytic fitness mutants of Pseudomonas syringae under controlled and field conditions. Appl. Environ. Microbiol. 60:3799–3808.

    PubMed  CAS  Google Scholar 

  • Bedford, D.E., MacNeill, B.H., Bonn, W.G. and Dirks, V.A. 1988, Population dynamics of Pseudomonas syringae pv. papulans on Mutsu apple, Can. J. Plant Pathol. 10:23–29.

    Article  Google Scholar 

  • Blakeman, J.P. and Fokkema, N.J. 1982, Potential for biological control of plant diseases on the phylloplane, Annu. Rev. Phytopathology 20:167–192.

    Article  Google Scholar 

  • Constantinidou, H.A., Hirano, S.S., Baker, L.S. and Upper, C.D. 1990, Atmospheric dispersal of ice nucleation-active bacteria: the role of rain, Phytopathology 80:934–937.

    Google Scholar 

  • Crosse, J.E. 1959, Bacterial canker of stone-fruits. IV. Investigation of a method for measuring the inoculum potential of cherry trees. Ann. Appl. Biol. 47:306–317.

    Google Scholar 

  • DeCleene, M. 1989, Scanning electron microscopy of the establishment of compatible and incompatible Xanthomonas campestris pathovars on the leaf surface of Italian ryegrass and maize, EPPO Bull. 19:81–88.

    Article  Google Scholar 

  • Eden-Green, S.J. and Billing, E. 1972, Fire blight: Occurrence of bacterial strands on various hosts under glasshouse conditions, Plant Pathol. 21:121–123.

    Article  Google Scholar 

  • Ercolani, G.L., Hagedorn, D.J., Kelman, A. and Rand, R.E. 1974, Epiphytic survival of Pseudomonas syringae on hairy vetch in relation to epidemiology of bacterial brown spot of bean in Wisconsin, Phytopathology 64:1330–1339.

    Article  Google Scholar 

  • Fryda, S.J. and Otta, J.D. 1978, Epiphytic movement and survival of Pseudomonas syringae on spring wheat, Phytopathology 48:209–211.

    Google Scholar 

  • Griffin, D.M. 1981, Water potential as a selective factor in the microbial ecology of soil, pp. 23–95. In: Parr, J.F., Gardner, M.R. and Elliott, L.F. (eds.), Water Potential Relations in Soil Microbiology, Soil Science Society of America, special publication no. 9.

    Google Scholar 

  • Gross, D.C., Cody, Y.S., Proebsting, E.L., Radamaker, G.K. and Spotts, R.A. 1983, Distribution, population dynamics and characteristics of ice nucleation active bacteria in deciduous fruit tree orchards, Appl. Environ. Microbiol. 46:1370–1379.

    PubMed  CAS  Google Scholar 

  • Haas, J.H. and Rotem, J. 1976, Pseudomonas lachrymans inoculum on infected cucumber leaves subjected to dew-and rain-type wetting, Phytopathology 66:1219–1223.

    Google Scholar 

  • Harrison, M.D., Brewer, J.W. and Merrill, L.D. 1980, Insect transmission of bacterial plant pathogens, pp. 201–292. In: Harris, K.F. and Maramorosch, K. (eds.). Vectors of Plant Pathogens. Academic Press, New York.

    Google Scholar 

  • Henis, Y. and Bashan, Y. 1986, Epiphytic survival of bacterial leaf pathogens, pp. 252–268. In: Fokkema, N.J. and van den Heuvel; J. (eds.), Microbiology of the Phyllosphere. Cambridge University Press, New York.

    Google Scholar 

  • Hirano, S.S., Rouse, D.I., Clayton, M.K. and Upper, C.D. 1995, Pseudomonas syringae pv. syringae and bacterial brown spot of bean: A study of epiphytic phytopathogenic bacteria and associated disease, Plant Dis. 79:1085–1093.

    Article  Google Scholar 

  • Hirano, S.S., Nordheim, E.V., Arny, D.C. and Upper, C.D. 1982, Lognormal distribution of epiphytic bacterial populations on leaf surfaces, Appl. Environ. Microbiol. 44:695–700.

    PubMed  CAS  Google Scholar 

  • Hirano, S.S. and Upper, C.D. 1991, Bacterial community dynamics, pp. 271–294. In: Andrews, J.H. and Hirano, S.S. (eds.), Microbial Ecology of Leaves. Springer-Verlag, New York.

    Google Scholar 

  • Hirano, S.S. and Upper, C.D. 1990, Population biology and epidemiology of Pseudomonas syringae, Annu. Rev. Phytopathology 28:155–177.

    Article  Google Scholar 

  • Hirano, S.S. and Upper, C.D. 1989, Diel variation in population size and ice nucleation activity of Pseudomonas syringae on snap bean leaflets, Appl. Environ. Microbiol. 55:623–630.

    PubMed  CAS  Google Scholar 

  • Hirano, S.S. and Upper, C.D. 1983, Ecology and epidemiology of foliar bacterial plant pathogens, Annu. Rev. Phytopathol. 21:243–269.

    Article  Google Scholar 

  • Hughes, T.P. 1990, Recruitment limitation, mortality and population regulation in open systems: a case study, Ecology 71:12–20.

    Article  Google Scholar 

  • Jacques, M-A, Kinkel, L.L. and Morris, C.E. 1995, Population sizes, immigration and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia), Appl. Environ. Microbiol. 61:899–906.

    PubMed  CAS  Google Scholar 

  • Jones, J.B., Pohrezny, K.L., Stall, R.E. and Jones, J.P. 1986, Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds and volunteer tomato plants, Phytopathology 76:430–434.

    Google Scholar 

  • Kinkel, L. 1991, Fungal community dynamics. pp. 253–270. In: Andrews, J.H. and Hirano, S.S. (eds.), Microbial Ecology of Leaves. Springer-Verlag, New York.

    Google Scholar 

  • Kinkel, L., Wilson, M. and Lindow, S.E. 1995, Effects of scale on estimates of epiphytic bacterial populations, Microb. Ecol. 29:283–297.

    Article  Google Scholar 

  • Kinkel, L.L. Andrews, J.H. and Nordheim, E.V. 1989, Fungal immigration dynamics and community development on apple leaves, Microb. Ecol. 18:45–58.

    Article  Google Scholar 

  • Leben, C. 1981, How plant-pathogenic bacteria survive, Plant Dis. 65:633–637.

    Article  Google Scholar 

  • Leben, C. 1969, Colonization of soybean buds by bacteria: observations with the scanning electron microscope, Can. J. Microbiol. 15:319–320.

    Article  PubMed  CAS  Google Scholar 

  • Leben, C. 1965, Epiphytic microorganisms in relation to plant disease, Annu. Rev. Phytopathology 3:209–230.

    Article  Google Scholar 

  • Legard, D.E. and Schwartz, H.F. 1987, Sources and management of Pseudomonas syringae pv. syringae epiphytes on dry beans in Colorado, Phytopathology 77:1503–1509.

    Google Scholar 

  • Lighthart, B. and Shaffer, B.T. 1995, Airborne bacteria in the atmospheric surface layer: Temporal distribution above a grass seed field, Appl. Environ. Microbiol. 61:1492–1496.

    PubMed  CAS  Google Scholar 

  • Lindemann, J. and Upper, C.D. 1985, Aerial dispersal of epiphytic bacteria over bean plants, Appl. Environ. Microbiol. 50:1229–1232.

    PubMed  CAS  Google Scholar 

  • Lindemann, J., Constantinidou, H.A., Barchet, W.R. and Upper, C.D. 1982, Plants as sources of airborne bacteria, including ice nucleation-active bacteria, Appl. Environ. Microbiol. 44:1059–1063.

    PubMed  CAS  Google Scholar 

  • Lindemann, J., Arny, D.C. and Upper, C.D. 1984, Epiphytic populations of Pseudomonas syringae pv. syringae on snap bean and nonhost plants and the incidence of bacterial brown spot disease in relation to cropping patterns, Phytopathology 74:1329–1333.

    Google Scholar 

  • Lindow, S.E. 1987, Competitive exclusion of epiphytic bacteria by Ice mutants of Pseudomonas syringae, Appl. Environ. Microbiol. 53:2520–2527.

    PubMed  CAS  Google Scholar 

  • Lindow, S.E. 1983, Methods of preventing frost injury caused by epiphytic ice nucleation active bacteria, Plant Dis. 67:327–333.

    Google Scholar 

  • Lindow, S.E. 1982, Population dynamics of epiphytic ice nucleation active bacteria on frost sensitive plants and frost control by means of antagonistic bacteria, pp. 395–416. In: Li, P.H. and Sakai, A. (eds.), Plant Cold Hardiness. Academic Press, New York.

    Google Scholar 

  • Lindow, S.E. 1985a, Ecology of Pseudomonas syringae relevant to the field use of Ice− deletion mutants constructed in vitro for plant frost control, pp. 23–35. In: Halvorson, H.O., Pramer, D. and Rogul, M. (eds.), Engineered Organisms in the Environment: Scientific Issues. ASM, Washington.

    Google Scholar 

  • Lindow, S.E. 1985b, Integrated control and role of antibiosis in biological control of fireblight and frost injury, pp. 83–115. In: Windels, C. and Lindow, S.E. (eds.), Biological Control on the Phylloplane. American Phytopathological Society Press, Minneapolis.

    Google Scholar 

  • Lindow, S.E. and Anderson, G. L. 1996, Influence of immigration on epiphitc bacterial populations on navel orange leaves. Appl. Environ. Microbiol. 62: 2978–2987.

    PubMed  CAS  Google Scholar 

  • Lindow, S.E., Arny, D.C. and Upper, C.D. 1983, Biological control of frost injury II: Establishment and effects of an antagonistic Erwinia herbicola isolate on corn in the field, Phytopathology 73:1102–1106.

    Google Scholar 

  • Lindow, S.E., Arny, D.C., Barchet, W.R. and Upper, C.D. 1978, The role of bacterial ice nuclei in frost injury to sensitive plants, pp. 249–263 In: Li, P. (ed.), Plant Cold Hardiness and Freezing Stress, Academic Press, New York.

    Google Scholar 

  • Lindow, S.E., Arny, D.C. and Upper, C.D. 1978, Distribution of ice nucleation active bacteria on plants in nature, Appl. Environ. Microbiol. 36:831–838.

    PubMed  CAS  Google Scholar 

  • Lindow, S.E. and Panopoulos, N.J. 1988, Field test of recombinant Ice-Pseudomonas syringae for biological frost control in potato, pp. 121–138. In: Sussman, M., Collins, C.H., Skinner, F.A. and Stewart-Tull, D.E. (eds.), The Release of Genetically Engineered Micro-organisms. Academic Press, London.

    Google Scholar 

  • Malvick, D.K. and Moore, L.W. 1988, Survival and dispersal of a marked strain of Pseudomonas syringae in a maple nursery, Plant Pathol. 37:573–580.

    Article  Google Scholar 

  • Mansvelt, D.E. and Hattingh, M.J. 1989, Scanning electron microscopy of invasion of apple leaves and blossoms by Pseudomonas syringae pv. syringae, Appl. Environ. Microbiol. 55:533–538.

    PubMed  CAS  Google Scholar 

  • Mansvelt, E.L. and Hattingh, M.J. 1987, Scanning electron microscopy of colonization of pear leaves by Pseudomonas syringae pv. syringae, Can. J. Bot. 65:2517–2522.

    Google Scholar 

  • Mariano, R.L.R. and McCarter, S.M. 1993, Epiphytic survival of Pseudomonas viridiflava on tomato and selected weed species, Microb. Ecol. 26:47–58.

    Article  Google Scholar 

  • McInnes, T.B., Gitaitis, R.D., McCarter, S.M., Jaworski, C.A. and Phatak, S.C. 1988, Airborne dispersal of bacteria in pepper transplant fields, Plant Dis. 72:575–579.

    Article  Google Scholar 

  • Mew, T.W. and Kennedy, B.W. 1982, Seasonal variation in populations of pathogenic Pseudomonads on soybean leaves, Phytopathology 72:103–105.

    Article  Google Scholar 

  • Mew, T.W., Mew, I.P.C. and Huang, J.S. 1984, Scanning electron microscopy of virulent and avirulent strains of Xanthomonas campestris pv. oryzae on rice leaves, Phytopathology 74:635–641.

    Google Scholar 

  • O’Brien, R.D. and Lindow, S.E. 1989, Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria, Phytopathology 79:619–627.

    Google Scholar 

  • Romantschuk, M. 1992., Attachment of plant pathogenic bacteria to plant surfaces, Annu. Rev. Phytopathology 30:225–244.

    Article  CAS  Google Scholar 

  • Roos, I.M.M. and Hattingh, M.J. 1983, Scanning electron microscopy of Pseudomonas syringae pv. morsprunorum on sweet cherry leaves, Phytopathol. Z. 180:18–25.

    Google Scholar 

  • Rosak, D.B. and Colwell, R.R. 1987, Survival strategies of bacteria in the natural environment, Microbiol. Rev. 51:365–379.

    Google Scholar 

  • Rosak, D.B., Grimes, D.J. and Colwell, R.R. 1984, Viable but nonrecoverable stage of Salmonella enteridis in aquatic systems, Can. J. Microbiol. 30:334–338.

    Google Scholar 

  • Seidler, R.J., Walter, M.V., Hern, S., Fieland, V., Schmedding, D. and Lindow, S.E. 1994, Measuring the dispersal and reentrainment of recombinant Pseudomonas syringae at California test sites, Microbial Releases 2:209–216.

    Google Scholar 

  • Timmer, L.W., Marois, J.J. and Achor, D. 1987, Growth and survival of xanthomonads under conditions nonconducive to disease development, Phytopathology 77:1341–1345.

    Google Scholar 

  • Upper, C.D. and Hirano, S.S. 1991, Aerial dispersal of bacteria, pp. 75–94. In: Ginzburg, L.R. (ed.), Assessing Ecological Risks of Biotechnology. Butterworth-Heinemann, Stoneham, Massachusetts.

    Google Scholar 

  • Vanneste, J.L., Yu, J. and Beer, S.V. 1992, Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora, J. Bacteriol. 174:2785–2796.

    PubMed  CAS  Google Scholar 

  • Venette, J.R. 1982, How bacteria find their hosts, pp. 75–94. In: Mount, M.S. and Lacy, G.H. (eds.). Phytopathogenic Prokaryotes, vol. 2. Academic Press, New York.

    Google Scholar 

  • Venette, J.R. and Kennedy, B.W. 1975, Naturally produced aerosols of Pseudomonas glycinea, Phytopathology 65:737–738.

    Google Scholar 

  • Wilson, M., Epton, H.A.S. and Sigee, D.C. 1989, Erwinia amylovora infection of hawthorn blossom: II. The stigma. J. Phytopathol. 1127:15–28.

    Google Scholar 

  • Wilson, M. and Lindow, S.E. 1992, Relationship of total and culturable cells in epiphytic populations of Pseudomonas syringae, Appl. Environ. Microbiol. 58:3908–3913.

    PubMed  CAS  Google Scholar 

  • Wilson, M. and Lindow, S.E. 1993, Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms, Phytopathology 83:117–123.

    Article  Google Scholar 

  • Wilson, M. and Lindow, S.E. 1994a, Ecological differentiation and coexistence between epiphytic Ice+ Pseudomonas syringae strains and an Ice− biological control agent, Appl. Environ. Microbiol. 60:3128–3137.

    PubMed  CAS  Google Scholar 

  • Wilson, M. and Lindow, S.E. 1994b, Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning, Appl. Environ. Microbiol. 60:4468–4477.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Lindow, S.E. (1996). Role of Immigration and Other Processes in Determining Epiphytic Bacterial Populations. In: Morris, C.E., Nicot, P.C., Nguyen-The, C. (eds) Aerial Plant Surface Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-34164-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-34164-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45382-3

  • Online ISBN: 978-0-585-34164-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics