Skip to main content

Modeling Canopy Spectral Properties to Retrieve Biophysical and Biochemical Characteristics

  • Chapter
Imaging Spectrometry — a Tool for Environmental Observations

Part of the book series: Eurocourses: Remote Sensing ((EURS,volume 4))

Abstract

Retrieval of canopy biophysical and biochemical characteristics from high spectral resolution data is investigated using model simulation. In the first part, we describe leaf, soil and canopy reflectance models that will be coupled to give the SPECAN model. It allows to compute canopy reflectance spectra as a function of canopy biophysical and biochemical characteristics. Then two approaches for canopy characteristics retrieval are considered.

The first one is based on wavelength shifts observed in the red edge of canopy reflectance. This spectral index characterized by the wavelength position of the inflexion point of the red edge minimizes the effects of soil optical properties, specular component and of the atmosphere. It is sensitive to leaf area index, chlorophyll concentration and leaf inclination. However, this approach is rather empirical and the link to individual canopy characteristics is not explicit.

The second approach is based on model inversion. Preliminary results indicate that it can provide good estimates of both leaf chlorophyll concentration and water equivalent thickness. However, the inversion process has to be stabilized to get reasonable values of canopy structure parameters. Further, in the inversion process, soil background optical properties are supposed known.

Finally, the model is used to investigate the sensitivity of canopy reflectance to leaf optical properties. These results initiate a discussion about the capability of high spectral resolution to remotely sense leaf biochemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Adams J.B., M.O. Smith and A.R. Gillespie (1991) ‘Imaging spectroscopy: data analysis and interpretation based on spectral mixture analysis’, in P. A. Englert (eds.), Remote Geochemical Analysis: Elemental and Mineralogical Composition.

    Google Scholar 

  • Allen W.A. and A.J. Richardson (1968) ‘Interaction of light with a plant canopy’, J. Opt. Soc. Amer., 58(8), 1023–1028.

    Google Scholar 

  • Allen W.A., H.W. Gausman, A.J. Richardson, and J.R. Thomas (1969) ‘Interaction of isotropic light with a compact plant leaf’, J. Opt. Soc. Amer., 59(10), 1376–1379.

    Google Scholar 

  • Allen W.A., H.W. Gausman, and A.J. Richardson (1970) ‘Mean effective optical constants of cotton leaves’, J. Opt. Soc. Amer, 60(4), 542–547.

    Google Scholar 

  • Allen W.A., H.W. Gausman, and A.J. Richardson (1973) ‘Willstater-Stoll theory of leaf reflectance evaluated by ray tracing’. Appl. Opt., 12(10), 2448–2453.

    Google Scholar 

  • Baret, F.(1988) ‘Un modèle simplifyé de réflectance et d‘absorptance d’un couvert végétal’, in ESA (ed.), 4ième Colloque International des Signatures Spectrales d’Objets en Télédétection., SP-187 113–120. Aussois, France: ESA.

    Google Scholar 

  • Baret, F., and G. Guyot (1991) ‘Potentials and limits of vegetation indices for LAI and APAR assessment’, Remote Sensing of Environment, 35, 161–173.

    Article  Google Scholar 

  • Baret F., S. Jacquemoud, and J.F. Hanocq (1992) ‘The soil line concept in remote sensing’, Remote Sensing Reviews, (in press)

    Google Scholar 

  • Baret F., S. Jacquemoud, G. Guyot, and C. Leprieur (1992) ‘Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands’, Remote Sensing of Environment, 41, 133–142.

    Article  Google Scholar 

  • Campbell, G.S.(1986) ‘Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution’, Agric. For. Meteorol., 36, 317–321.

    Google Scholar 

  • Chandrasekhar, S.(1960) ‘Radiative Transfer’, New York, Dover Publications.

    Google Scholar 

  • Conel J.E., R.O. Green, R.E. Alley, C.J. Bruegge, V. Carrere, J.S. Margolis, G. Vane, T.G. Chrien, P.N. Slater, S.F. Biggar, P.M. Teillet, R.D. Jackson, and S. Moran (1988) ‘In-flight radiometric calibration of the airborne visible/infrared imaging spectrometer (AVIRIS)’, in SPIE (ed.) Recent advances in sensors, Radiometry and data processing for remote sensing, 924, 179–195. Orlando, Florida, USA.

    Google Scholar 

  • Curran, P.J. (1989) ‘Remote sensing of foliar chemistry’, Remote Sensing of Environment, 30, 271–278.

    Article  Google Scholar 

  • Demetriades-Shah, T.H., M.D. Steven, and J.A. Clark (1990) ‘High resolution derivative spectra in remote sensing’, Remote Sensing of Environment, 33, 55–64.

    Article  Google Scholar 

  • Hall, F.G., K.F. Huemmrich, and S.N. Goward (1990) ‘Use of narrow-band spectra to estimate the fraction of absorbed photosynthetically active radiation’, Remote Sensing of Environment, 33, 47–54.

    Article  Google Scholar 

  • Hapke, B.(1981) ‘Bidirectional reflectance spectroscopy, 1. Theory’, J. Geophys. Res., 86, 3039–3054.

    Google Scholar 

  • Horler D.N.H., M. Dockray, and J. Barber (1983) ‘The red edge of plant leaf reflectance’, Int. J. Remote Sens., 4(2), 273–288.

    Article  Google Scholar 

  • Huete, A.R.(1986) ‘Separation of soil-plant spectral mixtures by factor analysis’, Remote Sensing of Environment, 19, 237–251.

    Google Scholar 

  • Jacquemoud, S., and F. Baret (1990) ‘PROSPECT: A model of leaf optical properties spectra’, Remote Sens. Environ., 34: 75–91.

    Article  Google Scholar 

  • Jacquemoud, S., F. Baret, and J.F. Hanocq (1992) ‘Modeling spectral and directional soil reflectance’, Remote Sensing of Environment, 41, 123–132.

    Article  Google Scholar 

  • Jacquemoud, S.(1992) ‘Utilisation de la haute résolution spectrale pour l’étude des couverts végétaux: Développement d’un modèle de réflectance spectrale’, Université Paris VII (France)/INRA/CNES, 1–92.

    Google Scholar 

  • Johnson L.F., and D.L. Peterson (1991) ‘AVIRIS observation of forest ecosystems along Oregon transect’, in G. Vane (ed.), Second JPL Airborne Geoscience Workshop, Pasadena, CA, USA, JPL, 190–199.

    Google Scholar 

  • Johnson L.F., F. Baret, and D.L. Peterson (1992) ‘Oregon Transect: Comparison of leaf-level reflectance with canopy-level and modelled reflectance’, in R.O. Green (ed), Third JPL Airborne Geoscience Workshop, Pasadena, CA, USA, JPL, 113–115.

    Google Scholar 

  • Kneizys, F., E. Shettle, G. Anderson, L. Abrew, J. Chetwynd, J. Shelby, and W. Gallery (1989) Atmospheric transmittance/radiance, Computer code Lowtran 7’, Hanscom AFB, MA (USA).

    Google Scholar 

  • Kubelka P., and Munk F. (1931) ‘Ein Beitrag zur Optik der Farbanstriche’, Ann. Tech. Phys., 11, 593–601.

    Google Scholar 

  • Kumar, R., and L. Silva (1973) ‘Light ray tracing through a leaf cross section’, Appl. Opt., 12(12), 2950–2954.

    Article  Google Scholar 

  • Malthus, T.J.(1989) ‘Anglo-French collaborative reflectance experiment. Experiment I, Broom’s Barn experimental Station, July 1989’, INRA Bioclimatologie, BP 91, 84143 Montfavet, France.

    Google Scholar 

  • Marten G.C., J.S. Shenk, F.E. Barton II (eds.) (1989) ‘Near infrared reflectance spectroscopy (MRS): analysis of forage quality’, United States Department of Agriculture Research Series Handbook Number 643.

    Google Scholar 

  • Pinty, B., M.M. Verstraete, and R.E. Dickinson (1989) ‘A physical model for predicting bidirectional reflectances over bare soils’, Remote Sensing of Environment, 27, 273–288.

    Article  Google Scholar 

  • Price, J.C.(1990) ‘On the information content of soil reflectance spectra’, Remote Sensing of Environment, 33, 113–121.

    Google Scholar 

  • Rock, B.N., T. Hoshizaki, and J.R. Miller (1988) ‘Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline’, Remote Sensing of Environment, 24, 109–127.

    Article  Google Scholar 

  • Rondeaux, G., and V.C. Vanderbilt (1992) ‘Estimation of photosynthetic capacity using polarization’, Proc. of IGARSS’ 92, Houston, Texas, USA, IEEE, 1471–1473.

    Google Scholar 

  • Smith, M.O., J.B. Adams, and D.E. Sabol (1994) ‘Mapping sparse vegetation canopies’, In: Hill, J. and J. Mégier (eds.) ‘Imaging Spectrometry-a tool for environmental observations’, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Tanré, D., C. Deroo, P. Duhaut, M. Herman, J.J. Morcrette, J. Perbos, and P.Y. Deschamps (1986) ‘Simulation of the satellite signal in the solar spectrum: The 5S code’, Int. J. Remote Sens. 11(4), 659–668.

    Article  Google Scholar 

  • Tucker, C.J., and M.W. Garratt (1977) ‘Leaf optical system modeled as a stochastic process’, Appl. Opt., 16(3), 635–642.

    Google Scholar 

  • Ustin S.L., M.O. Smith, and J.B. Adams (1991) ‘Remote sensing of ecological processes: A strategy for developing and testing ecological models using spectral mixture analysis’, in J. E. Field and C. Field (eds), Scaling Ecological Processes from Leaf to Landscape, Academic Press.

    Google Scholar 

  • Vanderbilt, V.C., S.L. Ustin, and J. Clark (1988) ‘Canopy geometry changes due to wind cause red edge spectral shift’, in Proc. of IGARSS’ 88, Edinburgh (Scotland), ESA SP-284, 835–836.

    Google Scholar 

  • Verhoef, W. (1984) ‘Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model’, Remote Sensing of Environment, 16: 125–141.

    Article  Google Scholar 

  • Verhoef, W. (1985) ‘Earth observation modeling based on layer scattering matrices’, Remote Sensing of Environment, 17: 165–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Baret, F., Jacquemoud, S. (1994). Modeling Canopy Spectral Properties to Retrieve Biophysical and Biochemical Characteristics. In: Hill, J., Mégier, J. (eds) Imaging Spectrometry — a Tool for Environmental Observations. Eurocourses: Remote Sensing, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-33173-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33173-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2965-7

  • Online ISBN: 978-0-585-33173-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics