Skip to main content

The Scientific Basis of Nuclear Waste Management

  • Reference work entry
Handbook of Nuclear Engineering

Abstract

Waste is produced at every stage of the nuclear fuel cycle. While large volumes of short-lived radioactive waste are already handled by the nuclear industry in surface storage facilities, the management mode of high-activity, long-lived waste has not been decided in detail and is still under study in all nuclear countries. Scientific knowledge is in progress, technical solutions are emerging, in a context where science and technology interact strongly with social and economical issues.

With a closed fuel cycle, waste management from its production to its final destination looks like a chain whose links are treatment recycling, conditioning, storage, and disposal of the final waste. With the open cycle option, the first link is absent.

This chapter provides the concepts and data that form the scientific basis of nuclear waste management.

Section 1 deals with the origin, nature, volume, and flux of nuclear waste, and describes the management options.

Section 2 deals with waste conditioning, with special emphasis on two important conditioning matrices: cement-like materials and glass. The elaboration and long-term behavior of these matrices are treated successively. In many countries, spent fuel is considered as waste, and must be conditioned as such. A special section is devoted to this issue.

Section 3 deals with waste storage and disposal. Interim storage of long-lived waste is already an industrial reality, and the design and properties of the corresponding installations are described. The final disposal of ultimate waste in deep geological repositories is more prospective, but the main concepts are described, with emphasis on the mechanisms, models, and orders of magnitude of the main physical and chemical phenomena that come into play in the long-term evolution of these installations. Finally, a short description of the methodology used to evaluate the safety of these installations is given. A simplified example of application of this methodology is given to evaluate the order of magnitude of the radiological impact of geological disposal of long-lived waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ANDRA, Dossier Argile 2005, ISBN 2-951 0108-8-5, http://www.andra.fr/interne.php3?id_article=934%26id_rubrique=160

  • Atkins M, Damidot D, Glasser FP (1994) Performance of cementitious systems in the repository. Mater Res Soc Symp Proc 333:315–326

    Article  Google Scholar 

  • Beaucaire C, Tertre E, Coreau N, Juery A, Legrand S (2008) A multi-site ion exchange model to predict contaminants sorption in sediments. Geochim Cosmochim Acta 72:A62

    Google Scholar 

  • Bejaoui S, Bary B, Nitsche S, Chaudanson D, Blanc C (2006) Experimental and modelling studies of the link between microstructure and effective diffusivity of cement pastes. Revue Européenne de Genie Civil 10–9:1073–1106

    Google Scholar 

  • Bennett DG, Higgo JJW, Wickham SM (2001) Review of waste immobilisation matrices. Galson Sciences Limited Report to United Kingdom Nirex Limited (0126–1, Version 1)

    Google Scholar 

  • Bernard P et al (2005) Hydration process and rheological properties of cement pastes modified by orthophosphate addition. J Eur Ceram Soc 25(11):1877

    Article  MathSciNet  Google Scholar 

  • Berner UA (1992) Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Manage 12:201–219

    Article  Google Scholar 

  • Bouniol P (2004) Etat des connaissances sur la radiolyse de l’eau dans les colis de déchets cimentés et son approche par simulation. CEA-R report n 6069

    Google Scholar 

  • Brown P, Curti E, Grambow B (2005) Chemical thermodynamics of zirconium, chemical thermodynamics series Volume 8, OECD Publication Prediction of long-term corrosion behaviour in nuclear waste systems, Eurocorr workshop, Nice 2004

    Google Scholar 

  • Cailleteau C, Angeli F, Devreux F, Gin S, Jestin J, Jollivet P, Spalla O (2008) Insight into silicate glass aqueous alteration mechanisms. Nat Mater 7:978–983

    Article  Google Scholar 

  • Blondiaux G, Fillet C (2006) The promise of specific conditioning. Clefs CEA n ̈53

    Google Scholar 

  • CEA Report CEA-R 6026 (2003) Database on long-lived radionuclides

    Google Scholar 

  • David D Analogues archéologiques et corrosion, doc ANDRA, collection sciences et techniques, ISSNN 1629-7237 (2003), http://www.andra.fr/publication/produit/192_analogues.pdf

  • de Marsily G (1981) Quantitative hydrogeology. Academic, New York

    Google Scholar 

  • Descostes M, Blin V, Bazer-Bachi F, Meier P, Grenut B, Radwan J, Schlegel ML, Buschaert S, Coelho D, Tevissen E (2008) Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones (Meuse/Haute–Marne, France). Appl Geochem 23:655–677

    Article  Google Scholar 

  • Distinguin M, Lavanchy JM (2007) Determination of hydraulic properties of the Callovo-Oxfordian argillite at the Bure site: synthesis of the results obtained in deep boreholes using several in situ investigation techniques. Phys Chem Earth 32:379–392

    Google Scholar 

  • Dossier ANDRA synthèse argile (2005) ISBN 2-951 0108-8-5

    Google Scholar 

  • Ewing R et al (27 October 2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314(5799):638–641

    Google Scholar 

  • Ferry C, Piron J-P, Poulesquen A, Poinssot C (2008) Radionuclides release from the spent fuel under disposal conditions: re-evaluation of the instant release fraction, basis for nuclear waste management. In: W.E. Lee, J.W. Roberts, N.C. Hyatt, R.W. Grimes (eds). Mater Res Symp 1107:447–454

    Google Scholar 

  • France’s National Inventory (2009) http://www.andra.fr, book AND 0001013 ISSN 1629-5730

  • Frugier P, Gin S, Minet Y, Chave T, Bonin B, Godon N, Lartigue JE, Jollivet P, Ayral A, De Windt L, Santarini G (2008) SON68 nuclear glass dissolution kinetics: current state of knowledge and basis of the new GRAAL Model. J Nucl Mater 380:8–21

    Article  Google Scholar 

  • Frugier P, Chave T, Gin S, Lartigue JE (2009) Application of the GRAAL model to leaching experiments with SON68 nuclear glass in initially pure water. J Nucl Mater 392:552–567

    Article  Google Scholar 

  • Gallé C, Peycelon H, Le Bescop P, Bejaoui S, L’Hostis V, Bary B, Bouniol P, Richet C Concrete long-term behaviour in the context of nuclear waste management: experimental and modelling research strategy. Journal de Physique IV (France) 136:25–38

    Google Scholar 

  • Gauthier-Lafaye F (2002) 2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa). CR Phys 3:839–849

    Article  Google Scholar 

  • Geckeis H, Rabung T (2008) Actinide geochemistry: from the molecular level to the real system. J Cont Hydrol 102:187–195

    Article  Google Scholar 

  • Geological Disposal of Radioactive Waste Safety Requirements IAEA Safety Standards Series No. WS-R-4 (2006) ISSN 1020-525X

    Google Scholar 

  • Glasser FP (1997) Fundamental aspects of cement solidification and stabilisation. J Hazard Mater 52:151–170

    Article  Google Scholar 

  • Glasser FP (2002) Characterization of the barrier performance of cements. Materials Research Society Symposium Proceedings 713, JJ9.1.1-JJ9.1.12

    Google Scholar 

  • Glasser FP, Atkins M (December 1994) Cements in radioactive waste disposal. MRS Bulletin, pp 33–37

    Google Scholar 

  • Grenthe I, Fuger J, Konings R, Lemire R, Muller A, Nguyen-Trung C, Wanner H (1992) Chemical thermodynamics of uranium, chemical thermodynamics series Volume 1. Elsevier, North-Holland, Amsterdam

    Google Scholar 

  • Gurban I, Laaksoharju M, Made B, Ledoux E (2003) Uranium transport around the reactor zone at Bangombe and Okelobondo (Oklo): examples of hydrogeological and geochemical model integration and data evaluation. J Cont Hydrol 61:247–264

    Article  Google Scholar 

  • Gwinner B, Sercombe J, Tiffreau C, Simondi-teisseire B, Felines I, Adenot F (2006) Modelling of bituminized radioactive waste leaching. Part II: experimental validation. J Nucl Mater 349:107–118

    Article  Google Scholar 

  • Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments (2010) IAEA Technical Reports Series No. 472

    Google Scholar 

  • Horseman ST, Higgo JJW, Alexander J, Harrington JF (1996) Water, gas and solute movement through argillaceous media. Nuclear Energy Agency, OECD publication, 290pp

    Google Scholar 

  • Hu Q, Zavarin M, Rose T (2008) Effect of reducing groundwater on the retardation of redox-sensitive radionuclides. Geochem Trans, 9:12, doi:10.1186/1467-4866-9-12

    Article  Google Scholar 

  • IAEA, Policies and strategies for radwaste management (2009) ISBN 978-92-0-103909-5 Nuclear Energy Series No. NW-G-1.1

    Google Scholar 

  • IAEA Categorizing operational radioactive wastes (2007) ISSN 1011-4289 TECDOC Series No. 1538

    Google Scholar 

  • IAEA (1991) IAEA Technical Report Series n ̈320, Evaluation of spent fuel as a final waste form, ISBN 92-0-1-125091-6

    Google Scholar 

  • IAEA (1993) IAEA Technical Report Series n ̈352, Bituminization processes to condition radioactive wastes, ISBN 92-0-100793-0

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (1998) Interim storage of radioactive waste packages. IAEA Technical Reports Series No. 390, ISBN 92-0-103698-1, Vienna, Austria

    Google Scholar 

  • IAEA (1999) Survey of wet and dry spent fuel storage. Report no. IAEA-TECDOC-1100), IAEA, Vienna, ISSN 1011-4289

    Google Scholar 

  • IAEA (2000) Multi-purpose container technologies for spent fuel management. Report no. IAEA-TECDOC-1192, IAEA, Vienna, ISSN 1011-4289

    Google Scholar 

  • IAEA, Technical report series n 435 (2004) Implications of Partitioning and Transmutation in Radioactive Waste Management, ISBN 92-0-115104-7

    Google Scholar 

  • ICRP (1996) Age-dependent doses to members of the public from intake of radionuclides Part 5 Complication of ingestion and inhalation dose coefficients 72, ISBN 0 08042737 5

    Google Scholar 

  • Johnson ER, Saverot PM (1997) Monograph on spent nuclear fuel storage technologies. Institute of Nuclear Materials Management, Deerfield

    Google Scholar 

  • Interim storage of spent nuclear fuel: a safe, flexible, and cost-effective near-term approach to spent fuel management (2001) A Joint Report from the Harvard University Project on Managing the Atom and the University of Tokyo Project on Sociotechnics of Nuclear Energy, June 2001

    Google Scholar 

  • Johnson LH, Ferry C, Poinssot C, Lovera P (2005) Spent fuel radionuclide source term model for assessing spent fuel performance in geological disposal. Part I – assessment of the instant release fraction. J Nucl Mater 346:56–65

    Article  Google Scholar 

  • Kersting AB et al. (7 January 1999) Migration of plutonium in groundwater at the Nevada Test site. Nature 397:56–59

    Google Scholar 

  • Lemire R, Fuger J, Nitsche H, Potter P, Rand M, Rydberg J, Spahiu K, Sullivan J, Ullman W, Vitorge P, Wanner H (2001) Chemical thermodynamics of neptunium and plutonium. Chemical thermodynamics series volume 4, OECD Publication

    Google Scholar 

  • Leroy P, Revil A, Altmann S, Tournassat C (2007) Modelling the composition of the pore water in a clay-rock geological formation (Callovo-Oxfordian, France). Geochim Cosmochim Acta 71(5):1087–1097

    Article  Google Scholar 

  • Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modelling and measurement. Appl Geochem 22:249–275

    Article  Google Scholar 

  • Lutze W, Ewing R (1988) Radioactive wasteform for the future. North Holland, New York, 778pp, ISBN 978–0444871046

    Google Scholar 

  • MacQuarrie KM, Mayer K (2005) Reactive transport modelling in fractured rock: a state-of-the-science review. Earth-Sci Rev 72:189–227

    Article  Google Scholar 

  • Mainguy M, Tognazzi C, Torrenti J-M, Adenot F (2000) Modelling of leaching in pure cement paste and mortar. Cement Concrete Res 30:83–90

    Article  Google Scholar 

  • Martin G et al (2006) A quantitative μNRA study of helium intergranular and volume diffusion in sintered UO2. NIMB 249:509–512

    Article  Google Scholar 

  • Miller W, Alexander R, Chapman R, McKinley I, Smellie J (1994) Natural analogue studies in the geological disposal of radioactive wastes. Studies in environmental science 57, Elsevier, Amsterdam

    Google Scholar 

  • Moreau Le Golvan Y, Study of fluid flow and transport properties using natural and artificial tracers at the Tournemire claystone site (France), Intnl conf on tracers and modelling in hydrogeology (TRAM 2000) IPSN

    Google Scholar 

  • Motellier S, Ly J, Gorgeon L, Charles Y, Hainos D, Meier P, Page J (2003) Modelling of the ion-exchange properties and indirect determination of the interstitial water composition of an argillaceous rock. Application to the Callovo-Oxfordian low-water-content formation. Appl Geochem 18:1517–1530

    Article  Google Scholar 

  • Mukhopadhyay S, Sonnenthal EL, Spycher N (2009) Modelling of coupled heat transfer and reactive transport processes in porous media: application to seepage studies at Yucca Mountain, Nevada. J Porous Media 12:725–748

    Article  Google Scholar 

  • Neff D Contribution of archaelogical analogs to the estimation of average corrosion rates and long-term corrosion mechanisms of low-carbon steel in soil. PhD thesis, FRNC-TH-5814 (2003)

    Google Scholar 

  • NRC, http://www.nrc.gov/waste/spent-fuel-storage.html

  • (1996) Nuclear Wastes: technologies for separation and transmutation, National Academy Press, Washington, DC, ISBN 0309052262

    Google Scholar 

  • Ojovan MI, Lee WE (2005) An introduction to nuclear waste immobilisation. Elsevier, Amsterdam, 315 pp

    Google Scholar 

  • PAGIS: Performance Assessment of Geological Isolation Systems (1990) ISBN 92-64-0334-3

    Google Scholar 

  • The EVEREST project: Sensitivity analysis of ecological disposal systems, Reliability Engineering and System Safety, vol 57, n , p 79–90 (1997)

    Google Scholar 

  • Papp R (1998a) Technische und geologische Barrieren bei der Endlagerung (in German), ATW 43, Jg 1998a, Heft 4, April, pp 252–255

    Google Scholar 

  • Petit JC (1992) Natural analogues for the design and performance assessment of radioactive waste forms: a review. J Geochem Explor 46:1–33

    Article  Google Scholar 

  • Peuget S, Cachia J-N, Jégou C, Deschanels X, Roudil D, Broudic V, Delaye J-M, Bart J-M (2006) Irradiation stability of R7T7-type borosilicate glass. J Nucl Mater 354:1–13

    Article  Google Scholar 

  • Peycelon H, Adenot F, Le Bescop P, Richet C, Blanc V (2001) Long-term behaviour of concrete: development of operational model to predict the evolution of its containment performance. Application to Cemented Waste Packages. Global 2001 Conference, Paris, France, September 9–13, 2001

    Google Scholar 

  • Pinet O, Grandjean A, Schuller S, Blisson T (2005) “Procédé de confinement d’une matière par vitrification, French patent EN 05/52218

    Google Scholar 

  • Poinssot C, Baeyens B, Bradbury M (1999) Experimental and modelling studies of caesium sorption on illite. Geochim Cosmochim Acta 63:3217–3227

    Article  Google Scholar 

  • Poinssot C, Ferry C, Lovera P, Jégou C, Gras J-M (2005b) Spent fuel radionuclide source term model for assessing spent fuel performance in geological disposal. Part II: matrix alteration model and global performance. J Nucl Mater 346:66–77

    Article  Google Scholar 

  • Policies and Strategies for Radioactive Waste Management, IAEA Nuclear Energy series NW-G-1.1 (2009) ISBN 978-92-0-103909-5

    Google Scholar 

  • Posiva Oy (1999) The final disposal facility for spent nuclear fuel: environmental assessment report, General Summary

    Google Scholar 

  • Pourcelot L, Gauthier-Lafaye F (1999) Hydrothermal and supergene clays of the Oklo natural reactors: conditions of radionuclide release, migration and retention. Chem Geol 157:155–174

    Article  Google Scholar 

  • Principles of Radioactive Waste Management Safety Fundamentals IAEA Safety Series No. 111-F, Metcalf P.E., ISBN 92-0-103595-0

    Google Scholar 

  • Report of the CEA working group (2003) CEA report 6026

    Google Scholar 

  • Research program on the long-term evolution of the spent fuel [PRECCI project, 2008, CEA report]

    Google Scholar 

  • Ribet I, Crovisier JL, Curti E, Del Nero M, Grambow B, Lemmens K, Luckscheiter B, Schwyn B (2004) Long-term behaviour of glass: improving the glass source term and substantiating the basic hypotheses. GLASTAB Final report. European Commission

    Google Scholar 

  • Rotenberg B, Marry V, Dufrêche JF, Giffaut E, Turq P (2007) A multiscale approach to ion diffusion in clays: Building a two-state diffusion–reaction scheme from microscopic dynamics. J Colloid Interface Sci 309:289–295

    Article  Google Scholar 

  • Roudil D, Deschanels X, Trocellier P, Jégou Ch, Peuget S, Bart J-M (2004) Helium thermal diffusion in a uranium dioxide matrix. J Nucl Mater 325:148–158

    Article  Google Scholar 

  • Safety Indicators for the Safety Assessment of Radioactive Waste Disposal IAEA TECDOC Series No. 1372, ISBN 92-0-108703-9

    Google Scholar 

  • Savage D (ed.) (1995) The scientific and regulatory basis for the geological disposal of radioactive waste. Wiley, West Sussex

    Google Scholar 

  • Schindler PW, Stumm W (1987) The surface chemistry of oxides, hydroxides and oxide minerals. In: Stumm W (ed.) Aquatic surface chemistry. Wiley-Interscience, New York

    Google Scholar 

  • Sercombe J,Gwinner B, Tiffreau C, Simondi-teisseire B, Adenot F (2006) Modelling of bituminized radioactive waste leaching. Part I: constitutive equations. J Nucl Mater 349:96–106

    Article  Google Scholar 

  • Silva R, Bidoglio G, Rand MH, Robouch P, Wanner H, Puigdomenech I (1995) Chemical thermodynamics of americium, chemical thermodynamics series Volume 2, Elsevier, Amsterdam

    Google Scholar 

  • Baudin P. et al. Major results and lessons learned for performance assessments of spent fuel geological disposal: the SPA project. Eurosafe 2000 (2001) http://www.eurosafe-forum.org

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley Interscience, New York, 1022pp

    Google Scholar 

  • Taylor HFW (1997) Cement chemistry. Academic, London

    Book  Google Scholar 

  • IAEA Tech. Report Series 435, Implications of partitioning and transmutation in radioactive waste management (2004) ISBN 92-0-115104-7

    Google Scholar 

  • Tuli JK (ed) (2000) Nuclear Wallet Cards, Brookhaven National Laboratory, Upton, New York

    Google Scholar 

  • United States Department of Energy (2002) Environmental impact statement for a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nye County, Nevada

    Google Scholar 

  • Van Iseghem P, Aertsens M, Gin S, Deneele D, Grambow B, McGrail P, Strachan D, Wicks G (2007) A critical evaluation of the dissolution mechanisms of high-level waste glasses in conditions of relevance for geological disposal (GLAMOR). In: SCK.CEN, CEA, Subatech, PNNL, SRNL (eds) EUR 23097 ed., pp 1–164

    Google Scholar 

  • Vernaz E (2002) Role of neoformed phases on the mechanisms controlling the resumption of SON68 glass alteration in alkaline media. CR Phys 3:813

    Article  Google Scholar 

  • Wickham SM (2003) Literature review of approaches to long-term storage of radioactive waste and materials. Galson Sciences Ltd., Oakham. GSL Report no. 0331-1

    Google Scholar 

Download references

Acknowledgment

Acknowledgments to L. Strudel, C. Poinssot, P. Vitorge, J. Cabrera, C. Gallé, E. Vernaz, L. Martin-Deidier

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this entry

Cite this entry

Bonin, B. (2010). The Scientific Basis of Nuclear Waste Management. In: Cacuci, D.G. (eds) Handbook of Nuclear Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-98149-9_28

Download citation

Publish with us

Policies and ethics