Skip to main content

Ras-Superfamily GTP-ases in Ovarian Cancer

  • Chapter
  • First Online:
Ovarian Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 149))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colicelli J. Human RAS superfamily proteins and related GTPases. Science STKE. 2004:RE13.

    Google Scholar 

  2. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–635.

    Article  CAS  PubMed  Google Scholar 

  3. Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol. 2004;5:886–896.

    Article  CAS  PubMed  Google Scholar 

  4. Rocks O, Peyker A, Bastiaens PI. Spatio-temporal segregation of Ras signals: one ship, three anchors, many harbors. Curr Opin Cell Biol. 2006;18:351–357.

    Article  CAS  PubMed  Google Scholar 

  5. Quimby BB, Dasso M. The small GTPase Ran: interpreting the signs. Curr Opin Cell Biol. 2003;15:338–344.

    Article  CAS  PubMed  Google Scholar 

  6. D'Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 2006;7:347–358.

    Article  PubMed  Google Scholar 

  7. Biou V, Cherfils J. Structural principles for the multispecificity of small GTP-binding proteins. Biochemistry. 2004;43:6833–6840.

    Article  CAS  PubMed  Google Scholar 

  8. Repasky GA, Chenette EJ, Der CJ. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol. 2004;14:639–647.

    Article  CAS  PubMed  Google Scholar 

  9. Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J. 2000;348:241–255.

    Article  CAS  PubMed  Google Scholar 

  10. Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001;294:1299–1304.

    Article  CAS  PubMed  Google Scholar 

  11. Herrmann C. Ras-effector interactions: after one decade. Curr Opin Struct Biol. 2003;13:122–129.

    Article  CAS  PubMed  Google Scholar 

  12. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349:117–127.

    Article  CAS  PubMed  Google Scholar 

  13. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6:167–180.

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002;16:1587–1609.

    Article  CAS  PubMed  Google Scholar 

  15. Bernards A, Settleman J. GAP control: regulating the regulators of small GTPases. Trends Cell Biol. 2004;14:377–385.

    Article  CAS  PubMed  Google Scholar 

  16. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov. 2007;6(7):541–555.

    Article  CAS  PubMed  Google Scholar 

  17. Cox AD, Der CJ. Ras family signaling: therapeutic targeting. Cancer Biol Ther. 2002;1:599–606.

    CAS  PubMed  Google Scholar 

  18. DerMardirossian C, Bokoch GM. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 2005;15:356–363.

    Article  CAS  PubMed  Google Scholar 

  19. Seabra MC, Wasmeier C. Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol. 2004;16:451–457.

    Article  CAS  PubMed  Google Scholar 

  20. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev. 2003;3(1):11–22.

    Article  CAS  Google Scholar 

  21. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–4689.

    CAS  PubMed  Google Scholar 

  22. Shayesteh L, Lu Y, Kuo WL, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999;21(1):99–102.

    Article  CAS  PubMed  Google Scholar 

  23. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–954.

    Article  CAS  PubMed  Google Scholar 

  24. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev. 2007;7(4):295–308.

    CAS  Google Scholar 

  25. Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Gutkind JS, Varmus HE. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell. 2002;1(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  26. Mayr D, Hirschmann A, Lohrs U, Diebold J. KRAS and BRAF mutations in ovarian tumors: a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol Oncol. 2006;103(3):883–887.

    Article  CAS  PubMed  Google Scholar 

  27. Bell DA. Origins and molecular pathology of ovarian cancer. Mod Pathol. 2005(Suppl 2):S19–S32.

    Google Scholar 

  28. Shih IeM, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004;164(5):1511–1518.

    CAS  PubMed  Google Scholar 

  29. Kurman RJ, Shih IeM. Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol. 2008;27(2):151–160.

    PubMed  Google Scholar 

  30. Scambia G, Masciullo V, Benedetti Panici P, et al. Prognostic significance of ras/p21 alterations in human ovarian cancer. Br J Cancer. 1997;75(10):1547–1553.

    CAS  PubMed  Google Scholar 

  31. Scambia G, Catozzi L, Panici PB, et al. Expression of ras oncogene p21 protein in normal and neoplastic ovarian tissues: correlation with histopathologic features and receptors for estrogen, progesterone, and epidermal growth factor. Am J Obstet Gynecol. 1993;168(1 Pt 1):71–78.

    CAS  PubMed  Google Scholar 

  32. Yaginuma Y, Yamashita K, Kuzumaki N, Fujita M, Shimizu T. Ras oncogene product p21 expression and prognosis of human ovarian tumors. Gynecol Oncol. 1992;46(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  33. Rodenburg CJ, Koelma IA, Nap M, Fleuren GJ. Immunohistochemical detection of the ras oncogene product p21 in advanced ovarian cancer. Lack of correlation with clinical outcome. Arch Pathol Lab Med. 1988;112(2):151–154.

    CAS  PubMed  Google Scholar 

  34. Zhou DJ, Gonzalez-Cadavid N, Ahuja H, Battifora H, Moore GE, Cline MJ. A unique pattern of proto-oncogene abnormalities in ovarian adenocarcinomas. Cancer. 1988;62(8):1573–1586.

    Article  CAS  PubMed  Google Scholar 

  35. van Dam PA, Vergote IB, Lowe DG, et al. Expression of c-erbB-2, c-myc, and c-ras oncoproteins, insulin-like growth factor receptor I, and epidermal growth factor receptor in ovarian carcinoma. J Clin Pathol. 1994;47(10):914–919.

    Article  PubMed  Google Scholar 

  36. Cuatrecasas M, Erill N, Musulen E, Costa I, Matias-Guiu X, Prat J. K-ras mutations in nonmucinous ovarian epithelial tumors: a molecular analysis and clinicopathologic study of 144 patients. Cancer. 1998;82(6):1088–1095.

    Article  CAS  PubMed  Google Scholar 

  37. Varras MN, Sourvinos G, Diakomanolis E, et al. Detection and clinical correlations of ras gene mutations in human ovarian tumors. Oncology. 1999;56(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  38. Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer. 2002;2:133–142.

    Article  PubMed  Google Scholar 

  39. Burbelo P, Wellstein A, Pestell RG. Altered Rho GTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat. 2004;84(1):43–58.

    Article  CAS  PubMed  Google Scholar 

  40. Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006;16:522–529.

    Article  CAS  PubMed  Google Scholar 

  41. Kleer CG, Griffith KA, Sabel MS, et al. Rho-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Res Treat. 2005;93:101–110.

    Article  CAS  PubMed  Google Scholar 

  42. Kamai T, Tsujii T, Arai K, et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res. 2003;9:2632–2641.

    CAS  PubMed  Google Scholar 

  43. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406(6795):532–535.

    Article  CAS  PubMed  Google Scholar 

  44. Fidyk N, Wang JB, Cerione RA. Influencing cellular transformation by modulating the rates of GTP hydrolysis by Cdc42. Biochemistry. 2006;45:7750–7762.

    Article  CAS  PubMed  Google Scholar 

  45. Lin R, Cerione RA, Manor D. Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J Biol Chem. 1999;274:23633–23641.

    Article  CAS  PubMed  Google Scholar 

  46. Horiuchi A, Imai T, Wang C, et al. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest. 2003;83(6):861–870.

    CAS  PubMed  Google Scholar 

  47. Han Z, Xu G, Zhou J, et al. Inhibition of motile and invasive properties of ovarian cancer cells by ASODN against Rho-associated protein kinase. Cell Commun Adhes. 2005;12(1–2):59–69.

    Article  CAS  PubMed  Google Scholar 

  48. Durkin ME, Ullmannova V, Guan M, Popescu NC. Deleted in liver cancer 3 (DLC-3), a novel Rho GTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth. Oncogene. 2007;6(31):4580–4589.

    Article  Google Scholar 

  49. Touchot N, Chardin P, Tavitian A. Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci U S A. 1987;84(23):8210–8214.

    Article  CAS  PubMed  Google Scholar 

  50. Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2:107–117.

    Article  CAS  PubMed  Google Scholar 

  51. Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A. Rab GTPases at a glance. J Cell Sci. 2007;120(Pt 22):3905–3910.

    Article  CAS  PubMed  Google Scholar 

  52. Bucci C, Chiariello M. Signal transduction gRABs attention. Cell Signal. 2006;18(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  53. Miaczynska M, Christoforidis S, Giner A, et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell. 2004;116:445–456.

    Article  CAS  PubMed  Google Scholar 

  54. Miaczynska M, Pelkmans L, Zerial M. Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol. 2004;16:400–406.

    Article  CAS  PubMed  Google Scholar 

  55. Wu M, Yin G, Zhao X, et al. Human RAB24, interestingly and predominantly distributed in the nuclei of COS-7 cells, is colocalized with cyclophilin A and GABARAP. Int J Mol Med. 2006;17:749–754.

    CAS  PubMed  Google Scholar 

  56. Alto NM, Soderling J, Scott JD. Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol. 2002;158:659–668.

    Article  CAS  PubMed  Google Scholar 

  57. Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol. 2006;209:2265–2275.

    Article  CAS  PubMed  Google Scholar 

  58. Del Nery E, Miserey-Lenkei S, Falguieres T, et al. Rab6A and Rab6A' GTPases play non-overlapping roles in membrane trafficking. Traffic. 2006;7:394–407.

    Article  CAS  PubMed  Google Scholar 

  59. Fan Y, Xin XY, Chen BL, Ma X. Knockdown of RAB25 expression by RNAi inhibits growth of human epithelial ovarian cancer cells in vitro and in vivo. Pathology. 2006;38:561–567.

    Article  PubMed  Google Scholar 

  60. Iida H, Noda M, Kaneko T, Doiguchi M, Mori T. Identification of rab12 as a vesicle-associated small GTPase highly expressed in Sertoli cells of rat testis. Mol Reprod Dev. 2005;71:178–185.

    Article  CAS  PubMed  Google Scholar 

  61. Kouranti I, Sachse M, Arouche N, Goud B, Echard A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol. 2006;16:1719–1725.

    Article  CAS  PubMed  Google Scholar 

  62. Wang W, Wyckoff JB, Frohlich VC, et al. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 2002;62:6278–6288.

    CAS  PubMed  Google Scholar 

  63. Yu X, Prekeris R, Gould GW. Role of endosomal Rab GTPases in cytokinesis. Eur J Cell Biol. 2007;86:25–35.

    Article  CAS  PubMed  Google Scholar 

  64. Roach WG, Chavez JA, Miinea CP, Lienhard GE. Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1. Biochem J. 2007;403:353–358.

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Ng EL, Tang BL. Rab23: what exactly does it traffic? Traffic. 2006;7:746–750.

    Article  CAS  PubMed  Google Scholar 

  66. Cheng KW, Lahad JP, Gray JW, Mills GB. Emerging role of RAB GTPases in cancer and human disease. Cancer Res. 2005;65:2516–2519.

    Article  CAS  PubMed  Google Scholar 

  67. Chua CE, Tang BL. Alpha-synuclein and Parkinson's disease: the first roadblock. J Cell Mol Med. 2006;10:837–846.

    Article  CAS  PubMed  Google Scholar 

  68. Di Pietro SM, Dell'Angelica EC. The cell biology of Hermansky-Pudlak syndrome: recent advances. Traffic. 2005;6:525–533.

    Article  PubMed  Google Scholar 

  69. Inglis PN, Boroevich KA, Leroux MR. Piecing together a ciliome. Trends Genet. 2006;22:491–500.

    Article  CAS  PubMed  Google Scholar 

  70. Ménasché G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet. 2000;25(2):173–176.

    Article  PubMed  Google Scholar 

  71. Croizet-Berger K, Daumerie C, Couvreur M, Courtoy PJ, van den Hove MF. The endocytic catalysts, Rab5a and Rab7, are tandem regulators of thyroid hormone production. Proc Natl Acad Sci U S A. 2002;99(12):8277–8282.

    Article  CAS  PubMed  Google Scholar 

  72. He H, Dai F, Yu L, et al. Identification and characterization of nine novel human small GTPases showing variable expressions in liver cancer tissues. Gene Expr. 2002;10(5–6):231–242.

    CAS  PubMed  Google Scholar 

  73. Cheng KW, Lahad JP, Kuo WL, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med. 2004;10(11):1251–1256.

    Article  CAS  PubMed  Google Scholar 

  74. Calvo A, Xiao N, Kang J, et al. Alterations in gene expression profiles during prostate cancer progression, functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Res. 2002;62:5325–5335.

    CAS  PubMed  Google Scholar 

  75. Mor O, Nativ O, Stein A, et al. Molecular analysis of transitional cell carcinoma using cDNA microarray. Oncogene. 2003;22:7702–7710.

    Article  CAS  PubMed  Google Scholar 

  76. Natrajan R, Williams RD, Hing SN, et al. Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol. 2006;210(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  77. Caswell PT, Spence HJ, Parsons M, et al. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell. 2007;13(4):496–510.

    Article  CAS  PubMed  Google Scholar 

  78. Coudert B, Anthoney A, Fiedler W, et al. European Organization for Research and Treatment of Cancer (EORTC). Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) Early Clinical Studies Group report. Eur J Cancer. 2001;37(17):2194–2198.

    Article  CAS  PubMed  Google Scholar 

  79. End DW, Smets G, Todd AV, et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. 2001;61(1):131–137.

    CAS  PubMed  Google Scholar 

  80. Rao S, Cunningham D, de Gramont A, et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J Clin Oncol. 2004;22(19):3950–3957.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the NCI (PO1CA099031), and CCSG (P30CA16672) to GBM, the ovarian cancer research fund (PPD/MDACC/01.08.01) to GBM and KWC. Department of Defense Breast Cancer Ideal Award W81XWH-06-1-0488 to KWC, and a Cancer Research UK Clinician Scientist award (C2757/A5902) to RA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon B. Mills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cheng, K.W., Agarwal, R., Mills, G.B. (2009). Ras-Superfamily GTP-ases in Ovarian Cancer. In: Stack, M., Fishman, D. (eds) Ovarian Cancer. Cancer Treatment and Research, vol 149. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-98094-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-98094-2_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-98093-5

  • Online ISBN: 978-0-387-98094-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics