Skip to main content

Synchrony in Neural Networks Underlying Seizure Generation in Human Partial Epilepsies

  • Chapter
  • First Online:
Coordinated Activity in the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 2))

Abstract

Focal (or partial) epilepsies are characterized by recurrent seizures generated in an abnormal region of the brain, the epileptogenic zone (EZ). Approximately 30% of cases are resistant to antiepileptic drugs. In this situation, surgical resection of the EZ is the only therapeutic option able to suppress seizures or, at least, to significantly reduce their frequency. The localization and the definition of the EZ are therefore crucial issues in epileptology and are addressed through detailed analysis of anatomo-functional data acquired in epileptic patients during pre-surgical evaluation. Among investigation methods used during this evaluation, intracerebral exploration remains the only way to directly record the electrophysiological activity (depth-EEG) from brain structures and to formulate hypotheses about their potential involvement in epileptogenic processes. In this context, a large number of studies have been dedicated to the analysis of depth-EEG signals. Based on the estimation of interdependences (i.e., statistical coupling) between signals recorded from distinct sites, some reports have demonstrated that the areas involved in the generation of seizures (defining the EZ) are characterized by synchronous oscillations at seizure onset (Bartolomei et al., 2005b; Bartolomei et al., 2001; Bartolomei et al., 2004b; Bartolomei et al., 1999; Duckrow and Spencer, 1992; Gotman and Levtova, 1996; Le Van Quyen et al., 1998; Lieb et al., 1987). The “synchronization” of activities recorded from brain structures is therefore an important phenomenon that may be used for identifying epileptogenic networks (i.e., promoting the initiation of seizures). Other studies based on nonlinear associations in multivariate signals (Guye et al., 2006) have also reported that long distance functional connectivity is dramatically altered during seizures, or indicated that the topology of networks changes as ictal activity develops (Ponten et al., 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcon G, Binnie CD, Elwes RD, Polkey CE. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr Clin Neurophysiol 1995; 94: 326–37.

    Article  PubMed  CAS  Google Scholar 

  • Ansari-Asl K, Senhadji L, Bellanger JJ, Wendling F. Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys Rev E Stat Nonlin Soft Matter Phys 2006; 74: 031916.

    Article  PubMed  Google Scholar 

  • Bancaud J, Angelergues R, Bernouilli C, Bonis A, Bordas-Ferrer M, Bresson M, et al. Functional stereotaxic exploration (SEEG) of epilepsy. Electroencephalogr Clin Neurophysiol 1970; 28: 85–6.

    Article  PubMed  CAS  Google Scholar 

  • Bancaud J, Brunet-Bourgin F, Chauvel P, Halgren E. Anatomical origin of déjà vu and vivid 'memories' in human temporal lobe epilepsy. Brain 1994; 117: 71–90.

    Article  PubMed  Google Scholar 

  • Barbeau E, Wendling F, Regis J, Duncan R, Poncet M, Chauvel P, et al. Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas. Neuropsychologia 2005; 43: 1329–37.

    Article  PubMed  Google Scholar 

  • Bartolomei F, Barbeau E, Gavaret M, Guye M, McGonigal A, Régis J, et al. Role of the rhinal cortices in déja vu-déjà vécu and reminiscences of memories. Neurology (accepté pour publication) 2004a.

    Google Scholar 

  • Bartolomei F, Chauvel P, Wendling F. Spatio-temporal dynamics of neuronal networks in partial epilepsy. Rev Neurol (Paris) 2005a; 161: 767–80.

    Article  CAS  Google Scholar 

  • Bartolomei F, Khalil M, Wendling F, Sontheimer A, Regis J, Ranjeva JP, et al. Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia 2005b; 46: 677–87.

    Article  PubMed  Google Scholar 

  • Bartolomei F, Trebuchon A, Gavaret M, Regis J, Wendling F, Chauvel P. Acute alteration of emotional behaviour in epileptic seizures is related to transient desynchrony in emotion-regulation networks. Clin Neurophysiol 2005c; 116: 2473–9.

    Article  PubMed  Google Scholar 

  • Bartolomei F, Wendling F, Bellanger J, Regis J, Chauvel P. Neural networks involved in temporal lobe seizures: a nonlinear regression analysis of SEEG signals interdependencies. Clin Neurophysiol 2001; 112: 1746–60.

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei F, Wendling F, Regis J, Gavaret M, Guye M, Chauvel P. Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy. Epilepsy Res 2004b; 61: 89–104.

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei F, Wendling F, Vignal JP, Chauvel P, Liegeois-Chauvel C. Neural networks underlying epileptic humming. Epilepsia 2002; 43: 1001–12.

    Article  PubMed  Google Scholar 

  • Bartolomei F, Wendling F, Vignal J, Kochen S, Bellanger J, Badier J, et al. Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electro-encephalography. Clin Neurophysiol 1999; 110: 1741–54.

    Article  PubMed  CAS  Google Scholar 

  • Bertram EH, Mangan PS, Zhang D, Scott CA, Williamson JM. The midline thalamus: alterations and a potential role in limbic epilepsy. Epilepsia 2001; 42: 967–78.

    Article  PubMed  CAS  Google Scholar 

  • Bettus G, Wendling F, Guye M, Valton L, Regis J, Chauvel P, et al. Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res 2008.

    Google Scholar 

  • Blumenfeld H, Rivera M, Vasquez JG, Shah A, Ismail D, Enev M, et al. Neocortical and thalamic spread of amygdala kindled seizures. Epilepsia 2007; 48: 254–62.

    Article  PubMed  Google Scholar 

  • Brazier MA. Spread of seizure discharges in epilepsy: anatomical and electrophysiological considerations. Exp Neurol 1972; 36: 263–72.

    Article  PubMed  CAS  Google Scholar 

  • Duckrow R, Spencer S. Regional coherence and the transfer of ictal activity during seizure onset in the medial temporal lobe. Electroencephalogr Clin Neurophysiol 1992; 82: 415–22.

    Article  PubMed  CAS  Google Scholar 

  • Gloor P. Experiential phenomena of temporal lobe epilepsy. Facts and hypotheses. Brain 1990; 113 (Pt 6): 1673–94.

    Article  PubMed  Google Scholar 

  • Gotman J, Levtova, V. Amygdala-hippocampus relationships in temporal lobe seizures: a phase coherence study. Epilepsy Res 1996; 25: 51–7.

    Article  PubMed  CAS  Google Scholar 

  • Guye M, Regis J, Tamura M, Wendling F, McGonigal A, Chauvel P, et al. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 2006; 129: 1917–28.

    Article  PubMed  Google Scholar 

  • Halgren E, Chauvel P. Experiential phenomena evoked by human brain electrical stimulation. In: Devinsky O, Beric A and Dugali M, editors. Electrical and Magnetic Stimulation of the Brain and Spinal Cord. New York: Raven Press Ltd, 1993: 123–40.

    Google Scholar 

  • Le Van Quyen M, Adam C, Baulac M, Martinerie J, Varela F. Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures. Brain Res 1998; 792: 24–40.

    Article  Google Scholar 

  • Lieb J, Hoque K, Skomer C, Song X. Interhemispheric propagation of human medial temporal lobe seizures: a coherence/phase analysis. Electroencephalogr Clin Neurophysiol 1987; 67: 101–19.

    Article  PubMed  CAS  Google Scholar 

  • Meeren HK, Pijn JP, Van Luijtelaar EL, Coenen AM, Lopes da Silva FH. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 2002; 22: 1480–95.

    PubMed  CAS  Google Scholar 

  • Mormann F, Lehnertz K, David P, Elger CE. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys D 2000; 144: 358–69.

    Article  Google Scholar 

  • Pijn J, Lopes Da Silva F. Propagation of electrical activity: nonlinear associations and time delays between EEG signals. In: Zschocke and Speckmann, editors. Basic Mechanisms of the EEG. Boston: Birkauser, 1993.

    Google Scholar 

  • Ponten S, Bartolomei F, Stam C. Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 2007; doi:10.1016/j.clinph.2006.12.002.

    Google Scholar 

  • Rosenow F, Luders H. Presurgical evaluation of epilepsy. Brain 2001; 124: 1683–700.

    Article  PubMed  CAS  Google Scholar 

  • Schevon CA, Cappell J, Emerson R, Isler J, Grieve P, Goodman R, et al. Cortical abnormalities in epilepsy revealed by local EEG synchrony. Neuroimage 2007.

    Google Scholar 

  • Schindler K, Leung H, Elger CE, Lehnertz K. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 2007; 130: 65–77.

    Article  PubMed  Google Scholar 

  • Spencer S, Guimaraes P, Katz A, Kim J, Spencer D. Morphological patterns of seizures recorded intracranially. Epilepsia 1992; 33: 537–45.

    Article  PubMed  CAS  Google Scholar 

  • Wendling F, Badier J, Chauvel P, Coatrieux J. A method to quantify invariant information in depth-recorded epileptic seizures. Electroencephalogr Clin Neurophysiol 1997; 102: 472–85.

    Article  PubMed  CAS  Google Scholar 

  • Wendling F, Bartolomei F, Bellanger JJ, Bourien J, Chauvel P. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain 2003; 126: 1449–59.

    Article  PubMed  CAS  Google Scholar 

  • Wendling F, Bartolomei F, Bellanger J, Chauvel P. Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of EEG. Clin Neurophysiol 2001; 112: 1201–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Bartolomei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bartolomei, F., Wendling, F. (2009). Synchrony in Neural Networks Underlying Seizure Generation in Human Partial Epilepsies. In: Velazquez, J., Wennberg, R. (eds) Coordinated Activity in the Brain. Springer Series in Computational Neuroscience, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-93797-7_7

Download citation

Publish with us

Policies and ethics