Skip to main content

Correlations of Cellular Activities in the Nervous System: Physiological and Methodological Considerations

  • Chapter
  • First Online:
Coordinated Activity in the Brain

Abstract

Rhythms (cycles, oscillations) and synchronization processes pervade all aspects of the living and nonliving, from circadian rhythms to individual habits and traits (Glass, 2001; Pikovsky et al., 2001). The distributed nature of cognition implies that distinct brain areas must somehow coordinate their activity: cognition, whether in the form of perception or motor actions, results from the integrated spatiotemporal coordinated activity of cell populations in the nervous system, including both glial and neuronal elements. Because the system’s collective behavior is difficult, if not impossible, to deduce from its individual components, the determination of brain-coordinated activity at adequate levels of description becomes fundamental to the understanding of nervous system function and its relation to behavior. Some questions arise: what variables are best suited to measure these correlations in activity? What order parameters should be used to characterize coordinated activity among cellular populations and how do these activity patterns relate to behavioral responses? What level of description should be used? This chapter summarizes some physiological and methodological considerations to aid the science practitioner in the study of correlated activity patterns in nervous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarabi A, Wallois F, Grebe R (2008) Does spatiotemporal synchronization of EEG change prior to absence seizures? Brain Res 1188:207–221.

    PubMed  CAS  Google Scholar 

  • Adey WR (1972) Organization of brain tissue: is the brain a noisy processor? Int J Neurosci 3: 271–284.

    PubMed  CAS  Google Scholar 

  • Afraimovich VS, Verichev NN, Rabinovich MI (1986) Stochastic synchronization of oscillations in dissipative systems. Izv Vyssh Uchebn Zaved Radiofiz 29:795–803.

    Google Scholar 

  • Alonso JM (2006) Neurons find strength through synchrony in the brain. Science 312:1604–1605.

    PubMed  CAS  Google Scholar 

  • Anishchenko VS, Astakhov VV, Neiman AB, Vadivasova TE, Schimansky-Geier L (2002) Nonlinear Dynamics of Chaotic and Stochastic Systems, Springer, Berlin.

    Google Scholar 

  • Anishchenko VS, Vadivasova TE (2002) Synchronization of self-oscillations and noise-induced oscillations. J Commun Technol Electron 47:117–148.

    Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871.

    PubMed  CAS  Google Scholar 

  • Bahar S, Moss F (2003) Stochastic phase synchronization in the crayfish mechanoreceptor photoreceptor system. Chaos 13:138–144.

    PubMed  CAS  Google Scholar 

  • Baptista MS, Pereira T, Sartorelli JC, Caldas IL, Kurths J (2005) Non-transitive maps in phase synchronization. Physica D 212:216–232.

    Google Scholar 

  • Baptista MS, Kurths J (2008) Transmission of information in active networks. Phys Rev E 77 (2 pt 2):026205.

    CAS  Google Scholar 

  • Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24:5216–5229.

    PubMed  CAS  Google Scholar 

  • Beggs JM (2008) The criticality hypothesis: how local cortical networks might optimise information processing. Phil Trans R Soc A 33:329–343.

    Google Scholar 

  • Bernstein N (1961) Trends and problems in the study of physiology of activity. In Whiting HT (Ed) Human Motor Actions: Bernstein Reassessed, North Holland, Amsterdam, 1984.

    Google Scholar 

  • Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI study. Eur J Neurosci 11:3276–3286.

    PubMed  CAS  Google Scholar 

  • Breakspear M, Terry JR (2002) Nonlinear interdependence in neural systems: motivation, theory and relevance. Int J Neurosci 112:1263–1284.

    PubMed  CAS  Google Scholar 

  • Breakspear M, Williams LM, Stam CJ (2004) A novel method for the topographic analysis of neural activity reveals formation and dissolution of “dynamic cell assemblies”. J Comp Neurosci 16:49–68.

    Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5:26–36.

    PubMed  Google Scholar 

  • Brown P, Marsden JF (2001) Cortical network resonance and motor activity in humans. Neuroscientist 7:518–527.

    PubMed  CAS  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network. Anatomy, function and relevance to disease. Ann N Y Acad Sci 1124:1–38.

    PubMed  Google Scholar 

  • Castelo-Branco M, Neuenschwander S, Singer W (1998) Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J Neurosci 18:6395–6410.

    PubMed  CAS  Google Scholar 

  • Chavez M, Adam C, Navarro V, Boccaletti S, Martinerie J (2005) On the intrinsic time scales involved in synchronization: a data-driven approach. Chaos 15:023904.

    Google Scholar 

  • Damasio AR (1989) The brain binds entities and events by multiregional activation from convergence zones. Neural Comput 1:123–132.

    Google Scholar 

  • Dehaene S, Changeux JP, Naccache L, Sackur J, Serhgent C (2006) Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10:204–211.

    PubMed  Google Scholar 

  • Diesmann M, Gewaltig M-O, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529–532.

    PubMed  CAS  Google Scholar 

  • Eckhorn R (2000) Cortical processing by fast synchronization: high frequency rhythmic and non-rhythmic signals in the visual cortex point to general principles of spatiotemporal coding. In Miller R (Ed) Time and the Brain, Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev Neurosci 2:704–716.

    CAS  Google Scholar 

  • Erb M, Aertsen A (1992) Dynamics of activity in biology-oriented neural network models: stability at low firing rates. In Information Processing in the Cortex, Springer, Berlin.

    Google Scholar 

  • Fatt P, Katz B (1950) Some observations on biological noise. Nature 166:597–598.

    PubMed  CAS  Google Scholar 

  • Fein G, Raz J, Brown FF, Merrin EL (1988) Common reference coherence data are confounded by power and phase effects. Electroencephalogr Clin Neurophysiol 69:581–584.

    PubMed  CAS  Google Scholar 

  • Fischer I, Vicente R, Buldu JM, Peil M, Mirasso CR, Torrent MC, Garcia-Ojalvo J (2006) Zero-lag long-range synchronization via dynamical relaying. Phys Rev Lett 97:123902.

    PubMed  Google Scholar 

  • Flohr H (1991) Brain processes and phenomenal consciousness. A new and specific hypothesis. Theory & Psychology 1:245–262.

    Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480.

    PubMed  Google Scholar 

  • Friston KJ, Stephan KM, Frackowiak RSJ (1997) Transient phase-locking and dynamic correlations: are they the same thing? Hum Brain Mapp 5:48–57.

    PubMed  CAS  Google Scholar 

  • Friston KJ (2001) Brain function, nonlinear coupling, and neuronal transients. Neuroscientist 7:406–418.

    PubMed  CAS  Google Scholar 

  • Fujisaka H, Yamada T, Kinoshita G, Kono T (2005) Chaotic phase synchronization and phase diffusion. Physica D 205:41–47.

    Google Scholar 

  • Fuster JM (2003) Cortex and Mind. Oxford University Press, Oxford.

    Google Scholar 

  • Galán RF, Fourcaud-Trocmé N, Ermentrout GB, Urban NN (2006) Correlation-induced synchronization of oscillations in olfactory bulb neurons. J Neurosci 26:3646–3655.

    PubMed  Google Scholar 

  • Galan RF, Ermentrout GB, Urban NN (2007) Stochastic dynamics of uncoupled neural oscillators: Fokker-Planck studies with the finite element method. Phys Rev E 76:056110.

    Google Scholar 

  • Garcia Dominguez L, Wennberg R, Gaetz W, Cheyne D, Snead OC III, Perez Velazquez JL (2005) Enhanced synchrony in epileptiform activity? Local versus distant phase synchronization in generalized seizures. J Neurosci 25:8077–8084.

    PubMed  Google Scholar 

  • Garcia Dominguez L, Wennberg R, Perez Velazquez JL, Guevara Erra R (2007) Enhanced measured synchronization of unsynchronized sources: inspecting the physiological significance of synchronization analysis of whole brain electrophysiological recordings. Int J Phys Sci 2: 305–317.

    Google Scholar 

  • Glass L, Perez R (1982) Fine structure of phase locking. Phys Rev Lett 48:1772–1775.

    Google Scholar 

  • Glass L (2001) Synchronization and rhythmic processes in physiology. Nature 410:277–284.

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic P (1988) Topography of cognition: parallel distributed networks in primate association cortex. Ann Rev Neurosci 11:137–156.

    PubMed  CAS  Google Scholar 

  • Gomez-Gardenes J, Moreno Y (2007a) Synchronization of networks with variable local properties. Int J Bif Chaos 17:2501–2507.

    Google Scholar 

  • Gomez-Gardenes J, Moreno Y, Arenas A (2007b) Synchronizability determined by coupling strengths and topology on complex networks. Phys Rev E 75:66106.

    Google Scholar 

  • Gomez-Gardenes J, Moreno Y, Arenas A (2007c) Paths to synchronization in complex networks. Phys Rev Lett 98:34101.

    Google Scholar 

  • Guevara R, Pérez Velazquez JL, Nenadovic V, Wennberg R, Senjanovic G, García Dominguez L (2005) Phase synchronization measurements using electroencephalographic recordings: what can we really say about neuronal synchrony? Neuroinformatics 3:301–313.

    PubMed  Google Scholar 

  • Haken H (2002) Brain Dynamics. Springer Verlag, Berlin.

    Google Scholar 

  • Hansel D, Sompolinsky H (1996) Chaos and synchrony in a model of a hypercolumn in visual cortex. J Comp Neurosci 3:7–34.

    CAS  Google Scholar 

  • Harris KD (2005). Neural signatures of cell assembly organization. Nature Rev Neurosci 6: 399–407.

    CAS  Google Scholar 

  • Hölscher C, Anwyl R, Rowan MJ (1997) Stimulation on the positive phase of hippocampla theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17:6470–6477.

    PubMed  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1997) Weakly Connected Neural Networks, Springer Verlag, Berlin.

    Google Scholar 

  • Huygens C (1673) Horologium Oscillatorium, A.F. Muguet, Paris, France

    Google Scholar 

  • Jirsa VK (2004) Connectivity and dynamics of neural information processing. Neuroinformatics 2:183–204.

    PubMed  Google Scholar 

  • John ER (2002) The neurophysics of consciousness. Brain Res Rev 39:1–28.

    PubMed  Google Scholar 

  • Kauffman SA (1993) The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, Oxford.

    Google Scholar 

  • Kelso JAS (1995) Dynamic Patterns: The Self-Organization of Brain and Behaviour. MIT Press, Cambridge, MA.

    Google Scholar 

  • Kelso JAS, Engstrøm DA (2006) The Complementary Nature. MIT Press, Cambridge, MA.

    Google Scholar 

  • Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425:954–956.

    PubMed  CAS  Google Scholar 

  • Kestler J, Kopelowitz E, Kanter I, Kinzel W (2008) Patterns of chaos synchronization. Phys Rev E 77:046209

    Google Scholar 

  • Kimpo RR, Theunissen FE, Doupe AJ (2003) Propagation of correlated activity through multiple stages of a neural circuit. J Neurosci 23:5750–5761

    PubMed  CAS  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195.

    PubMed  CAS  Google Scholar 

  • Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P (2007) Measuring synchronization in coupled model systems: a comparison of different approaches. Physica D 225:29–42.

    Google Scholar 

  • Lachaux J-P, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208.

    PubMed  CAS  Google Scholar 

  • Lachaux J-P, Rodriguez E, Le van Quyen M, Lutz A, Martinerie J, Varela FJ (2000) Studying single-trials of phase synchronous activity in the brain. Int J Bif Chaos 10:2429–2439.

    Google Scholar 

  • Lago Fernandez LF, Huerta R, Corbacho F, Sigüenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84:2758–2761.

    PubMed  CAS  Google Scholar 

  • Langton CG (1990) Computation at the edge of chaos—phase transitions and emergent computation. Physica D 42:12–37.

    Google Scholar 

  • Levina A, Herrmann JM, Geisel T (2007) Dynamical synapses causing self-organized criticality in neural networks. Nature Phys 3:857–860.

    CAS  Google Scholar 

  • Li C-L (1959) Synchronization of unit activity in the cerebral cortex. Science 129:783–784.

    PubMed  CAS  Google Scholar 

  • Livanov MN (1977) Spatial Organization of Cerebral Processes, Wiley, New York.

    Google Scholar 

  • Luria, AR (1966) Higher Cortical Functions in Man. Basic Books, New York.

    Google Scholar 

  • Lutz A, Lachaux J-P, Martinerie J, Varela FJ (2002) Guiding the study of brain dynamics by using first-person data: synchrony patterns correlate with ongoing conscious states during a simple visual task. Proc Natl Acad Sci USA 99:1586–1591.

    PubMed  CAS  Google Scholar 

  • Makarov VA, Nekorkin VI, Velarde MG (2001) Spiking behavior in a noise-driven system combining oscillatory and excitatory properties. Phys Rev Lett 86:3431–3434.

    PubMed  CAS  Google Scholar 

  • McIntosh AR (2004) Contexts and catalysts. A resolution of the localization and integration of function in the brain. Neuroinformatics 2:175–181.

    PubMed  Google Scholar 

  • McMillen D, Kopell N (2003) Noise-stabilized long-distance synchronization in populations of model neurons. J Comp Neurosci 15:143–157.

    Google Scholar 

  • Menendez de la Prida L, Sanchez-Andres JV (1999) Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain. Phys Rev E 60:3239–3243.

    Google Scholar 

  • Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144: 358–369.

    Google Scholar 

  • Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281.

    PubMed  Google Scholar 

  • Neiman A, Silchenko A, Anishchenko V, Schimansky-Geier L (1998) Stochastic resonance: noise-induced phase coherence. Phys Rev E 58:7118–7125.

    CAS  Google Scholar 

  • Netoff TI, Schiff SJ (2002) Decreased neuronal synchronization during experimental seizures. J Neurosci 22:7297–7307.

    PubMed  CAS  Google Scholar 

  • Nicolelis, MAL (1999) Methods for Neural Ensemble Recordings, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Nunez PL (1981) A study of origins of the time dependencies of scalp EEG: ii—experimental support of theory. IEEE Trans Biomed Eng 28:281–288.

    PubMed  CAS  Google Scholar 

  • Nunez PL (1995) Neocortical Dynamics and Human EEG Rhythms, Oxford University Press, New York.

    Google Scholar 

  • Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515.

    Google Scholar 

  • Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23:371–437.

    PubMed  CAS  Google Scholar 

  • Pakdaman K, Mestivier D (2004) Noise induced synchronization in a neuronal oscillator. Physica D 192:123–137.

    Google Scholar 

  • Pecora LM, Carroll TL, Heagy JF (1995) Statistics for mathematical properties of maps between time series embeddings. Phys Rev E 52:3420–3439.

    CAS  Google Scholar 

  • Pecora LM, Carroll TL, Johnson GA, Mar DJ, Heagy JF (1997) Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 7:520–543.

    PubMed  CAS  Google Scholar 

  • Perez Velazquez JL, Wennberg R (2004) Metastability of brain states and the many routes to seizures: numerous causes, same result. In Pandalai SG (Ed) Recent Research Developments in Biophysics, vol. 3, Transworld Research Network, Kerala.

    Google Scholar 

  • Perez Velazquez JL (2005) Brain, behaviour and mathematics: are we using the right approaches? Physica D 212:161–182.

    Google Scholar 

  • Perez Velazquez JL (2006) Brain research: a perspective from the coupled oscillators field. NeuroQuantology 4:155–165.

    Google Scholar 

  • Perez Velazquez JL, Garcia Dominguez L, Guevara Erra R (2007a) Fluctuations in neuronal synchronization in brain activity correlate with the subjective experience of visual recognition. J Biol Phys 33:49–59.

    Google Scholar 

  • Perez Velazquez JL, Garcia Dominguez L, Guevara Erra R, Wennberg R (2007b) The fluctuating brain: dynamics of neuronal activity. In Wang CW (Ed) Nonlinear Phenomena Research Perspectives, Nova Science Publishers, New York

    Google Scholar 

  • Perez Velazquez JL, Garcia Dominguez L, Wennberg R (2007c) Complex phase synchronization in epileptic seizures: evidence for a devil’s staircase. Phys Rev E 75:011922.

    CAS  Google Scholar 

  • Pikovsky A, Rosenblum M, Osipov G, Kurths J (1997) Phase synchronization of chaotic oscillators by external driving. Physica D 104:219–238.

    Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge.

    Google Scholar 

  • Popovych OV, Hauptmann C, Tass PA (2008) Impact of nonlinear feedback on synchronized oscillators. J Biol Phys 34, 367–379 DOI 10.1007/s10867-008-9068-1.

    Google Scholar 

  • Postnova S, Voigt K, Braun HA (2007) Neural synchronization at tonic-to-bursting transitions. J Biol Phys 33:129–143.

    PubMed  Google Scholar 

  • Quiroga RQ, Kraskov A, Kreuz T, Grassberger P (2002) Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E 65:041903.

    Google Scholar 

  • Romano MC, Thiel M, Kurths J, von Bloh W (2004) Multivariate recurrence plots. Phys Lett A 330:214–223.

    CAS  Google Scholar 

  • Romano MC, Thiel M, Kurths J, Kiss IZ, Hudson JL (2005) Detection of synchronization for non-phase coherent and non-stationary data. Europhys Lett 71:466–472.

    CAS  Google Scholar 

  • Rubin J, Bose A (2006) The geometry of neuronal recruitment. Physica D 221:37–57.

    Google Scholar 

  • Schevon CA, Cappell J, Emerson R, Isler J, Grieve P, Goodman R, McKhann G Jr, Weiner H, Doyle W, Kuzneiecky R, Devinsky R, Gilliam F (2007) Cortical abnormalities in epilepsy revealed by local EEG synchrony. NeuroImage 35:140–148.

    PubMed  CAS  Google Scholar 

  • Schiff SJ, So P, Chang T, Burke RE, Sauer T (1996) Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E 54: 6708–6724.

    CAS  Google Scholar 

  • Schild D (1984) Coordination of neuronal signals as structures in state space. Int J Neurosci 22:283–297.

    PubMed  CAS  Google Scholar 

  • Shaw JC, Brooks S, Colter N, O’Connor KP (1979) A comparison for schizophrenic and neurotic patients using EEG power and coherence spectra. In Gruzelier JH and Flor-Henry P (Eds.) Hemisphere Asymmetries of Function in Psychopathology, Elsevier/North-Holland Biomedical, Amsterdam, pp. 257–284.

    Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Ann Rev Neurosci 18:555–586.

    PubMed  CAS  Google Scholar 

  • Singer W (2006) Phenomenal awareness and consciousness from a neurobiological perspective. NeuroQuantology 4:134–154.

    Google Scholar 

  • Smith DR, Smith GK (1965) A statistical analysis of the continual activity of single cortical neurones in the cat unanaesthetized isolated forebrain. Biophys J 5:47–74.

    PubMed  CAS  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141.

    PubMed  CAS  Google Scholar 

  • Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355:25–28.

    PubMed  CAS  Google Scholar 

  • Stratonovich RL (1963, 1967) Selected Topics in the Theory of Random Noise, vols. 1 & 2, Gordon & Breach, New York.

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276.

    PubMed  CAS  Google Scholar 

  • So P, Barreto E, Josic K, Sander E, Schiff SJ (2002) Limits to the experimental detection of nonlinear synchrony. Phys Rev E 65:46225.

    Google Scholar 

  • Swanson LW (2000) What is the brain? Trends Neurosci 23:519–527.

    PubMed  CAS  Google Scholar 

  • Tass P, Rosenblum M, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund H-J (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81:3291–3294.

    CAS  Google Scholar 

  • Taylor CP, Dudek FE (1984) Synchronization without active chemical synapses during hippocampal afterdischarges. J Neurophysiol 52:145–155.

    Google Scholar 

  • Tononi G, Edelman G, Sporns O (1998a) Complexity and coherency: integrating information in the brain. Trends Cogn Sci 2:474–484.

    PubMed  CAS  Google Scholar 

  • Tononi G, McIntosh AR, Russel DP, Edelman GM (1998b) Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7:133–149.

    PubMed  CAS  Google Scholar 

  • Tononi G, Edelman GM (2000) Schizophrenia and the mechanisms of conscious integration. Brain Res Rev 31:391–400.

    PubMed  CAS  Google Scholar 

  • Trujillo LT, Peterson MA, Kaszniak AW, Allen JJB (2005) EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods. Clin Neurophysiol 116:172–189.

    PubMed  Google Scholar 

  • Varela F, Thompson E, Rosch E (1991) The Embodied Mind, MIT Press, Cambridge, MA.

    Google Scholar 

  • Varela FJ, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nature Rev Neurosci 2:229–239.

    CAS  Google Scholar 

  • Volgushev M, Chistiakova M, Singer W (1998) Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential. Neuroscience 83:15–25.

    PubMed  CAS  Google Scholar 

  • von der Malsburg C (1981) The Correlation Theory of Brain Function. Internal report, Max-Planck Institute, Göttingen, Germany.

    Google Scholar 

  • Ward LM, Doesburg SM, Kitajo K, MacLean SE, Roggeveen AB (2006) Neural synchrony in stochastic resonance, attention, and consciousness. Can J Exp Psychol 60:319–326.

    PubMed  Google Scholar 

  • Whitham EM, Lewis T, Pope KJ, Fitzgibbon SP, Clark CR, Loveless S, DeLosAngeles D, Wallace AK, Broberg M, Willoughby JO (2008) Thinking activates EMG in scalp electrical recordings. Clin Neurophysiol 119:1166–1175.

    PubMed  Google Scholar 

  • Winfree AT (1980) The Geometry of Biological Time, Springer-Verlag, Berlin.

    Google Scholar 

  • Winter WR, Nunez PL, Ding J, Srinivasan R (2007) Comparison of the effect of volume conduction on EEG coherence with the effect of field spread on MEG coherence. Statist Med 26: 3946–3957.

    Google Scholar 

  • Zaveri HP, Duckrow RB, Spenser SS (2000) The effect of a scalp reference signal on coherence measurements of intracranial electroencephalograms. Clin Neurophysiol 111:1293–1299.

    PubMed  CAS  Google Scholar 

  • Zhigulin VP, Rabinovich MI, Huerta R, Abarbanel HDI (2003) Robustness and enhancement of neural synchronization by activity-dependent coupling. Phys Rev E 67:021901.

    CAS  Google Scholar 

  • Zorzano MP, Vazquez L (2003) Emergence of synchronous oscillations in neural networks excited by noise. Physica D 179:105–114.

    Google Scholar 

Download references

Acknowledgments

Our research is supported by the Natural Science and Engineering Research Council of Canada (NSERC), the Hospital for Sick Children Foundation, and the Bial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Luis Perez Velazquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Perez Velazquez, J.L., Erra, R.G., Wennberg, R., Dominguez, L.G. (2009). Correlations of Cellular Activities in the Nervous System: Physiological and Methodological Considerations. In: Velazquez, J., Wennberg, R. (eds) Coordinated Activity in the Brain. Springer Series in Computational Neuroscience, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-93797-7_1

Download citation

Publish with us

Policies and ethics