Skip to main content

Essential fatty acids in aquatic food webs

  • Chapter
  • First Online:
Lipids in Aquatic Ecosystems

Abstract

Aquatic ecosystems occupy the largest part of the biosphere, and lipids in those systems provide the densest form of energy. Total lipid energy can be used to predict features of animal population dynamics such as egg production by fish stocks. Difficulties in determining the relationship between spawner biomass and the number of offspring produced (recruitment) have led researchers to look at lipids (Marshall et al. 1999). A positive association between recruitment and liver weights in cod prompted an investigation of total lipid energy as a proxy for total egg production by fish stocks. Marshall et al. (1999) found a highly significant linear relationship between total egg production and total lipid energy, and they suggested this approach should be used at other trophic levels too. Total lipid content of fish has also been connected to climate-induced community changes (Litzow et al. 2006). It is hypothesized that this relates to the dietary availability of just two fatty acids which were positively correlated with total lipid content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlgren, G., Van Nieuwerburgh, L., Wanstrand, I., Pedesen, M., Boberg, M., Snoeijs, P. 2005. Imbalance of fatty acids in the base of the Baltic Sea food web – a mesocosm study. Can. J. Fish. Aquat. Sci. 62:2240–2253.

    CAS  Google Scholar 

  • Alkanani, T., Parrish C.C., Thompson, R.J., and McKenzie C.H. 2007. Role of fatty acids in cultured mussels, Mytilus edulis, grown in Notre Dame Bay, Newfoundland. J. Exp. Mar. Biol. Ecol. 348:33–45.

    CAS  Google Scholar 

  • Anderson, T.R. and Pond, D.W. 2000. Stoichiometric theory extended to micronutrients: Comparison of the roles of essential fatty acids, carbon, and nitrogen of marine copepods. Limnol. Oceanogr. 45:1162–1167.

    CAS  Google Scholar 

  • Arendt, K.E., Jonasdottir, S.H., Hansen, P.J., and Gartner, S. 2005. Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Mar. Biol. 146:513–530.

    CAS  Google Scholar 

  • Arts, M.T., Ackman, R.G., and Holub, B.J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122–137.

    CAS  Google Scholar 

  • Aukema, H.M., and Holub, B.J. 1989. Effect of dietary supplementation with a fish oil concentrate on the alkenylacyl class of ethanolamine phospholipid in human platelets. J. Lipid Res. 30:59–64.

    PubMed  CAS  Google Scholar 

  • Balk, E.M., Lichtenstein, A.L., Chung, M., Kupelnick, B., Chew, P., and Lau, J. 2006. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: A systematic review. Atherosclerosis 189:19–30.

    PubMed  CAS  Google Scholar 

  • Bell, J.G., McEvoy, L.A., Estevez, A., Shields, R.J., and Sargent, J.R. 2003. Optimising lipid nutrition in first-feeding flatfish larvae. Aquaculture 227: 211–220.

    CAS  Google Scholar 

  • Bell, J.G., and Sargent, J.R. 2003. Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218:491–499.

    CAS  Google Scholar 

  • Bettger, W. 1998. Exploring the link between very long chain fatty acids and human health. Agri-food research in Ontario. Ministry of Agriculture, Food and Rural Affairs. Vol. 21:15

    Google Scholar 

  • Broglio, E., Jonasdottir, S.H., Calbet, S., Jakobsen, H.H., and Saiz, E. 2003. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat. Microb. Ecol. 31:267–278.

    Google Scholar 

  • Budge, S.M., and Parrish, C.C. 1998. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland.II. Fatty acids. Org. Geochem. 29:1547–1559.

    CAS  Google Scholar 

  • Burr, G.O., and Burr, M.M. 1930. On the nature and role of the fatty acids essential in nutrition. J. Biol. Chem. 86:587–621.

    CAS  Google Scholar 

  • Canuel, E.A., Cloern, J.E., Ringelberg, D.B., Guckert, J.B., and Rau, G.H. 1995. Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. Limnol. Oceanogr. 40:67–81.

    CAS  Google Scholar 

  • Careaga-Houck, M., and Sprecher, H. 1989. Effect of a fish oil diet on the composition of rat neutrophil lipids and the molecular species of choline and ethanolamine glycerophospholipids. J. Lipid Res. 30:77–87.

    PubMed  CAS  Google Scholar 

  • Ciapa, B., Allemand, D., and De Renzis, G. 1995. Effect of arachidonic acid on Na+/H+ exchange and neutral amino acid transport in sea urchin eggs. Exp. Cell Res. 218:248–254.

    PubMed  CAS  Google Scholar 

  • Clandinin, M.T., Cheema, S., Field, C.J., and Baracos, V.E., 1992. Impact of dietary essential fatty acids on insulin responsiveness in adipose tissue, muscle, and liver, pp. 416–420. InA. Sinclair and R. Gibson [eds.], Essential fatty acids and eicosanoids. American Oil Chemists’ Society, Champaign.

    Google Scholar 

  • Copeman L.A., Parrish, C.C., Brown, J.A., and Harel, M. 2002. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture 210:285–304.

    CAS  Google Scholar 

  • Copeman, L.A., and Parrish, C.C. 2003. Marine lipids in a cold coastal ecosystem: Gilbert Bay, Labrador. Mar. Biol. 143:1213–1227.

    CAS  Google Scholar 

  • Cunnane, S.C. 1996. Recent studies on the synthesis, β-oxidation, and deficiency of linoleate and α-linolenate: are essential fatty acids more aptly named indispensable or conditionally dispensable fatty acids? Can. J. Physiol. Pharmacol. 74:629–639.

    CAS  Google Scholar 

  • Cunnane, S.C., and Likhodii, S.S., 1996. 13C NMR spectroscopy and gas chromatograph – combustion – isotope ratio mass spectrometry: complementary applications in monitoring the metabolism of 13C-labelled polyunsaturated fatty acids. Can. J. Physiol. Pharmacol. 74:761–768.

    PubMed  CAS  Google Scholar 

  • Cunnane, S.C. 2000. The conditional nature of the dietary need for a polyunsturates: a proposal to reclassify ‘essential fatty acids’ as ‘conditionally-indispensable’ or ‘conditionally-dispensable’ fatty acids. British J. Nutrition 84:803–812.

    CAS  Google Scholar 

  • Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D., and Hagen, W., 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46:225–340.

    PubMed  Google Scholar 

  • Desvilettes, C., Bourdier, G., and Breton, J.C. 1997. On the occurrence of a possible bioconversion of linolenic acid into docosahexaenoic acid by the copepod Eucylcops serrulatus fed on microalgae. J. Plankton Res. 19:273–278.

    CAS  Google Scholar 

  • Dulloo, A.G., Decrouy, A., and Chinet, A., 1994. Suppression of Ca2+-dependent heat production in mouse skeletal muscle by high fish oil consumption. Metabolism 43: 931–934.

    PubMed  CAS  Google Scholar 

  • Dunstan, G.A., Volkman, J.K., Jeffrey, S.W., and Barrett, S.M., 1992. Biochemical composition of microalgae from green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J. Exp. Mar. Biol. Ecol. 16:115–134.

    Google Scholar 

  • Eckmann, R. 2004. Overwinter changes in mass and lipid content of Perca fluviatilis and Gymnocephalus cernuus. J. Fish Biol. 65:1498–1511.

    Google Scholar 

  • Eldho, N.V., Feller, S.E., Tristram-Nagle, S., Polozov, I.V., and Gawrisch, K. 2003. Polyunsaturated docosahexaenoic vs docosapentaenoic acid – differences in lipid matrix properties from the loss of one double bond. J. Am. Chem. Soc. 125:6409–6421.

    PubMed  CAS  Google Scholar 

  • Evans, R.P., Parrish, C.C., Zhu, P., Brown, J.A., and Davis, P.J. 1998. Changes in phospholipase A2 activity and lipid content during early development of Atlantic halibut, (Hippoglossus hippoglossus). Mar. Biol. 130:369–376.

    CAS  Google Scholar 

  • Farkas T., Fodor, E., Kitajka, K., and Halver, J.E. 2001. Response of fish membranes to environmental temperature. Aquacul. Res. 32:645–655.

    CAS  Google Scholar 

  • Fodor, E., Jones, R. H., Buba, C., Kitajka, K., Dey, I., and Farkas, T. 1995. Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study. Lipids 30:1119–1126.

    PubMed  CAS  Google Scholar 

  • Garcia, A.S., Parrish, C.C., and Brown, J.A. 2005. Effect of different live food enrichments on early growth and lipid composition of Atlantic cod larvae (Gadus morhua). European Aquaculture Society. Special Pub. No. 36:164–167. Belgium.

    Google Scholar 

  • Garcia, A.S., Parrish, C.C., and Brown, J.A. 2008. Use of enriched rotifers and Artemia during larviculture of Atlantic cod (Gadus morhua, Linnaeus, 1758): Effects on early growth, survival and lipid composition. Aquacul. Res. 39:406–419.

    CAS  Google Scholar 

  • Gerwick, W.H. 1994. Structure and biosynthesis of marine algal oxylipins. Biochim. Biophys. Acta 1211:243–255.

    PubMed  CAS  Google Scholar 

  • Goodnight, S.H. 1996. The fish oil puzzle. Sci. Med. September/October: 42–51.

    Google Scholar 

  • Gurr, M.I., and Harwood, J.L. 1991. Lipid Biochemistry. An introduction. 4th edition. London, England: Chapman-Hall. 406 pp.

    Google Scholar 

  • Hall, J.M., Parrish, C.C. and Thompson, R.J., 2002. Eicosapentaenoic acid regulates scallop (Placopecten magellanicus) membrane fluidity in response to cold. Biol. Bull. 202:201–203.

    PubMed  CAS  Google Scholar 

  • Hallaq, H., and Leaf, A., 1992. Stabilization of cardiac arrhythmias by ω-3 polyunsaturated fatty acids, pp. 245–247. In A. Sinclair and R. Gibson [eds.], Essential fatty acids and eicosanoids. American Oil Chemists’ Society, Champaign.

    Google Scholar 

  • Harris, W.S. 1997a. N-3 Fatty acids and serum lipoproteins: animal studies. Am. J. Clin. Nutr. 65:1611S–1616S.

    CAS  Google Scholar 

  • Harris, W.S. 1997b. N-3 fatty acids and serum lipoproteins: human studies. Am. J. Clin. Nutr. 65:1645S–1654S.

    CAS  Google Scholar 

  • Hazel, J.R., and Williams, E.E. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29:167–227.

    PubMed  CAS  Google Scholar 

  • He, K., Song, Y., Daviglus, M.L., Liu, K., Van Horn, L., Dyer, A.R., and Greenland, P. 2004. Accumulated evidence on fish consumption and coronary heart disease mortality: A meta-analysis of cohort studies. Circulation 109:2705–2711.

    PubMed  Google Scholar 

  • Herzberg, G.R. 1989. The mechanism of serum triacylglycerol lowering by dietary fish oil, pp. 143–158. In R.K. Chandra [ed.], Health effects of fish and fish oils. ARTS Biomedical Publishers and Distributors, St. John’s.

    Google Scholar 

  • Herzberg, G.R. and Rogerson, M. 1989. The effect of dietary fish oil on muscle and adipose tissue lipoprotein lipase. Lipids 24:351–353.

    PubMed  CAS  Google Scholar 

  • Hong, S., Gronert, K., Devchand, P.R., Moussignac, R.-L., and Serhan, C.N. 2003. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. J. Biol. Chem. 278:14677–14687.

    PubMed  CAS  Google Scholar 

  • Hong, S., Tjonahen, E., Morgan, E.L., Lu, Y., Serhan, C.N., and Rowley, A.F. 2005. Rainbow trout (Oncorhynchus mykiss) brain cells biosynthesize novel docosahexaenoic acid-derived resolvins and protectins – Mediator lipidomic analysis. Prostaglandins other Lipid Mediat. 78:107–116.

    PubMed  CAS  Google Scholar 

  • Hooper, L., Thompson, R.L., Harrison, R.A., Summerbell, C.D., Ness, A.R., Moore, H.J., Worthington, H.V., Durrington, P.N., Higgins, J.P.T., Capps, N.E., Riemersma, R.A., Ebrahim, S.B.J., and Smith, G.D. 2006. Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. British Medical J. 332:752–760.

    CAS  Google Scholar 

  • Iverson, S.J., Field, C., Bowen, W.D., and Blanchard, W. 2004. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74:211–235.

    Google Scholar 

  • Izquierdo, M.S., Socorro, J., Arantzamendi, L., and Hernandez-Cruz, C.M. 2000. Recent advances in lipid nutrition in fish larvae. Fish Physiol. Biochem. 22:97–107.

    CAS  Google Scholar 

  • Jiang, Y.-H., Lupton, J.R., and Chapkin, R.S. 1997. Dietary fish oil blocks carcinogen-induced down-regulation of colonic protein kinase C isozymes. Carcinogen. 18:351–357.

    CAS  Google Scholar 

  • Jobling, M., Johansen, S.J.S., Foshaug, H., Burkow, I.C., and Jorgensen, E.H. 1998. Lipid dynamics in anadromous Arctic charr, Salvelinus alpinus (L.): seasonal variations in lipid storage depots and lipid class composition. Fish Physiol. Biochem. 18:225–240.

    CAS  Google Scholar 

  • Jonasdottir, S.H, and Kiorboe, T. 1996. Copepod recruitment and food composition: do diatoms affect hatching success? Mar. Biol. 125:743–750.

    Google Scholar 

  • Jorgensen E.H., Johansen, S.J.S., and Jobling, M 1997. Seasonal patterns of growth, lipid deposition and lipid depletion in anadromous Arctic charr. J. Fish Biol. 51:312–326.

    CAS  Google Scholar 

  • Kainz, M., Arts, M.T., and Mazumder, A. 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol. Oceanogr. 49:1784–1793.

    CAS  Google Scholar 

  • Kang, J.X., Wang, J., Wu, L., and Kang, Z.B. 2004. Fat-1 mice convert n-6 to n-3 fatty acids. Nature 427:504.

    PubMed  CAS  Google Scholar 

  • Klein Breteler, W.C.M., Schogt, N., Baas, M., Schouten, S., and Kraay, G. W. 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar. Biol. 135:191–198.

    Google Scholar 

  • Kris-Etherton, P.M., Harris, W.S., and Appel, L.J. 2002. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757.

    PubMed  Google Scholar 

  • Kumon, Y., Yokoyama, R., Yokochi, T., Honda, D., and Nakahara, T. 2003. A new labyrinthulid isolate, which solely produces n-6 docosapentaenoic acid. Appl. Microbiol. Biotechnol. 63:22–28.

    PubMed  CAS  Google Scholar 

  • Lall, S.P. 2000. Nutrition and health of fish. In L.E. Cruz-Suarez, D. Ricque-Marie, M.Tapia-Salazar, M.A. Olvera-Novoa and R. Civera-Cerecedo [eds.], Avances en nutricion acuicola V. Proceedings of V Simposium Internacional de Nutricion Acuicola. November 2000. Mérida, Yucatán, Mexico.

    Google Scholar 

  • Litzow, M., Bailey, K.M., Prahl, F.G., and Heintz, R. 2006. Climate regime shifts and reorganization of fish communities: the essential fatty acid limitation hypothesis. Mar. Ecol. Prog. Ser. 315:1–11.

    CAS  Google Scholar 

  • Marshall, C.T., Yaragina, N.A., Lambert, Y., and Kjesbu, O.S. 1999. Total lipid energy as a proxy for total egg production by fish stocks. Nature 402:288–290.

    CAS  Google Scholar 

  • Masuda R., and Tsukamoto, K. 1999. School formation and concurrent developmental changes in carangid fish with reference to dietary conditions. Environ. Biol. Fishes. 56:243–252.

    Google Scholar 

  • Metz, J.G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabal, K., Domergue, F. Yamada, A., Yazawa, K., Knauf, V., and Browse, J. 2001. Production of polyunsaturated fatty acids by polyketide synthase in both prokaryotes and eukaryotes. Science 293:290–293.

    PubMed  CAS  Google Scholar 

  • Milke, L.M., Bricelj, V.M, and Parrish C.C. 2004. Growth of postlarval sea scallops, Placopecten magellanicus, on microalgal diets, with emphasis on the nutritional role of lipids and fatty acids. Aquaculture 234:293–317.

    CAS  Google Scholar 

  • Milke, L.M., Bricelj, V.M. and Parrish, C.C. 2006. Comparison of early life history stages of the bay scallop, Argopecten irradians: Effects of microalgal diets on growth and biochemical composition. Aquaculture 260:272–289.

    CAS  Google Scholar 

  • Montero, D., Kalinowski, T., Obach, A., Robaina, L., Tort, L., Caballero, M.J., and Izquierdo, M.S. 2003. Vegetable lipid sources for gilthead seabream (Sparus aurata): effects on fish health. Aquaculture 225:353–370.

    CAS  Google Scholar 

  • Montero, D., Socorro, J., Tort, L., Caballero, M.J., Robaina, L., Vergara, J.M., and Izquierdo, M.S. 2004. Glomerulonephritis and immunosuppression associated with dietary essential fatty acid deficiency in gilthead sea bream, Sparus aurata L., juveniles. J. Fish Diseases. 27:297–306.

    CAS  Google Scholar 

  • Morgan, I. J., McCarthy, I.D., and Metcalfe, N.B. 2002. The influence of life-history strategy on lipid metabolism in overwintering juvenile Atlantic salmon. J. Fish Biol. 60:674–686.

    Google Scholar 

  • Moriguchi, T., Greiner, R.S., and Salem, Jr., N. 2000. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 75:2563–2573.

    PubMed  CAS  Google Scholar 

  • Mozaffarian, D., and Rimm, E.B. 2006. Fish intake, contaminants, and human health. J. Amer. Medical Assoc. 296:1885–1899.

    CAS  Google Scholar 

  • Müller-Navarra, D.C., Brett, M.T., Liston, A.M., and Goldman, C.R. 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77.

    PubMed  Google Scholar 

  • Müller-Navarra, D.C., Brett, M.T., Park, S., Chandra, S., Ballantyne, A.P., Zorita, E., and Goldman, C.R. 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427:69–72.

    PubMed  Google Scholar 

  • Muriana, F.J.G., and Ruiz-Gutierrez, V. 1992. Effect of n-6 and n-3 polyunsaturated fatty acids ingestion on rat liver membrane-associated enzymes and fluidity. J. Nutr. Biochem. 3:659–663.

    CAS  Google Scholar 

  • Nanton, D.A., and Castell, J.D., 1998. The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tisbe sp., for use as a live food for marine fish larvae. Aquaculture 163:251–261.

    CAS  Google Scholar 

  • Napolitano, G.E. 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems, pp. 21–44. In M.T. Arts, and B.C. Wainman [eds.], Lipids in freshwater ecosystems. Springer, New York.

    Google Scholar 

  • Park, H.G., Puvanendran, V., Kellett, A., Parrish, C.C., Brown, J.A. 2006. Effect of enriched rotifers on growth and survival of Atlantic cod (Gadus morhua L.) larvae. ICES J. Mar. Sci. 63:285–295.

    CAS  Google Scholar 

  • Parrish, C.C., Pathy, D.A., and Angel, A. 1990. Dietary fish oils limit adipose tissue hypertrophy in rats. Metabolism 39:217–219.

    PubMed  CAS  Google Scholar 

  • Parrish, C.C., Myher, J.J., Kuksis, A., and Angel, A. 1997. Lipid structure of rat adipocyte plasma membranes following dietary lard and fish oil. Biochim. Biophys. Acta. 1323:253–262.

    PubMed  CAS  Google Scholar 

  • Parrish, C.C., Whiticar, M., and Puvanendran V. 2007. Is ω6 docosapentaenoic acid an essential fatty acid during early ontogeny in marine fauna? Limnol. Oceanogr. 52:476–479.

    CAS  Google Scholar 

  • Payne, M.F., and Rippingale, R.J. 2000. Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture 187:85–96.

    Google Scholar 

  • Pernet, F., Bricelj, V.M., and Parrish, C.C. 2005. Effect of varying dietary levels of ω6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus. J. Exp. Mar. Biol. Ecol. 327:115–133.

    CAS  Google Scholar 

  • Pickova, J., Dutta, P.C., Larsson, P.-O., and Kiessling, A. 1997. Early embryonic cleavage pattern, hatching success, and egg-lipid fatty acid composition: comparison between two cod (Gadus morhua) stocks. Can. J. Fish. Aquat. Sci. 54:2410–2416.

    CAS  Google Scholar 

  • Pond, D., Harris, R., Head, R., and Harbour, D. 1996. Environmental and nutritional factors determining seasonal variability in the fecundity and egg viability of Calanus helgolandicus in coastal waters off Plymouth, UK. Mar. Ecol. Prog. Ser. 143:45–63.

    Google Scholar 

  • Post, D.M., Pace, M. L., and Hairston, N.G. Jr. 2000. Ecosystem size determines food-chain length in lakes. Nature 405:1047–1049.

    PubMed  CAS  Google Scholar 

  • Ruxton, C.H.S., Reed, S.C., Simpson, M.J.A. and Millington, K.J. 2004. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J. Hum. Nutr. Dietet. 17:449–459.

    CAS  Google Scholar 

  • Sargent, J.R. 1995. Origins and functions of egg lipids: nutritional implications, pp. 353–372. In N.R. Bromage and R.J. Roberts [eds.], Broodstock management and egg and larval quality. Blackwell Science, Oxford.

    Google Scholar 

  • Sargent, J.R., Bell, G., McEvoy, L., Tocher, D., and Estevez, A. 1999a. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177:191–199.

    CAS  Google Scholar 

  • Sargent, J.R., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., and Tocher, D. 1999b. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179:217–229.

    CAS  Google Scholar 

  • Sargent, J.R., Tocher, D.R, and Bell, J.G. 2002. The lipids, pp 181–257. In J.E. Halver and R.W. Hardy [eds.], Fish nutrition, 3rd edition. Elsevier, New York.

    Google Scholar 

  • Shahidi, F., and Miraliakbari, H. 2004. Omega-3 (n–3) fatty acids in health and disease: Part 1 -Cardiovascular disease and cancer. J. Med. Food 7:387–401.

    PubMed  CAS  Google Scholar 

  • Shields, R.J., Bell, J.G., Luizi, F.S., Gara, B., Bromage, N.R., and Sargent, J.R. 1999. Natural copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids. J. Nutr. 129:1186–1194.

    PubMed  CAS  Google Scholar 

  • Simopoulos, A.P. 2002. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Amer. Coll. Nutr. 21:495–505.

    CAS  Google Scholar 

  • Sinensky, M. 1974. Homeoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Nat. Acad. Sci. USA 71:522–525.

    PubMed  CAS  Google Scholar 

  • Stanley, D.W., and Howard, R.W. 1998. The biology of prostaglandins and related eicosanoids in invertebrates: cellular, organismal and ecological actions. Amer. Zool. 38:369–381.

    CAS  Google Scholar 

  • Stapp, P., Polis, G.A., and Piñero F.S. 1999. Stable isotopes reveal strong marine and El Niño effects on island food webs. Nature 401:467–469.

    CAS  Google Scholar 

  • Stubbs, C.D. 1992. The structure and function of docosahexaenoic acid in membranes, pp. 116–121. In A. Sinclair and R. Gibson [eds.], Essential fatty acids and eicosanoids. American Oil Chemists’ Society, Champaign.

    Google Scholar 

  • Tang, K.W. and Taal, M. 2005. Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J. Exp. Mar. Biol. Ecol. 318:85–98.

    Google Scholar 

  • Tocher, D.R. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11:107–184.

    CAS  Google Scholar 

  • Toivonen L.V., Nefedova, Z.A., Sidorov, V.S., Sharova, Y.N. 2001 Adaptive changes in fatty acid compositions of whitefish Coregonus lavaretus L. tissue lipids caused by anthropogenic factors. Applied Biochem. Microbiol. 37:314–317.

    CAS  Google Scholar 

  • Thompson, G. A., Jr. 1992. The regulation of membrane lipid metabolism. 230 pgs. Boca Raton: CRC Press.

    Google Scholar 

  • Urich, K., 1994. Comparative animal biochemistry. 782 pgs. Springer, New York.

    Google Scholar 

  • Viso, C.A., and Marty, J.-C. 1993. Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533.

    CAS  Google Scholar 

  • Wacker, A., Becher, P., and von Elert, E. 2002. Food quality effects of unsaturated fatty acids on larvae of the zebra mussel Dreissena polymorpha. Limnol. Oceanogr. 47:1242–1248.

    Google Scholar 

  • Wijendran, V., and Hayes, K.C. 2004. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 24:597–615.

    PubMed  CAS  Google Scholar 

  • Xu, X. L., Ji, W. J., Castell, J.D., O’Dor, R.K. 1994. Essential fatty acid requirement of the Chinese prawn, Pinaeus chinensis. Aquaculture 127:29–40.

    CAS  Google Scholar 

  • Yeo, Y.K., Philbrick, D.-J., and Holub, B.J. 1989. Altered acyl chain composition of alkylacyl, alkenylacyl, and diacyl subclasses of choline and ethanolamine glycerophospholipids in rat heart by dietary fish oil. Biochim. Biophys. Acta 1001:25–30.

    PubMed  CAS  Google Scholar 

  • Vander Zanden, M.J., Casselman, J.M., Rasmussen, J.B. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464–466.

    CAS  Google Scholar 

  • Zsigmond, E., Parrish, C., Fong, B., and Angel, A. 1990. Changes in dietary lipid saturation modify fatty acid composition and high-density-lipoprotein binding of adipocyte plasma membrane. Am. J. Clin. Nutr. 52:110–119.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Parrish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Parrish, C.C. (2009). Essential fatty acids in aquatic food webs. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89366-2_13

Download citation

Publish with us

Policies and ethics