Skip to main content

Predictive Modeling of Pathogen Growth in Cooked Meats

  • Chapter
  • First Online:
Safety of Meat and Processed Meat

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adak, G. K., Long, S. M., & O’Brien, S. J. (2002). Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut, 51, 832–841.

    CAS  Google Scholar 

  • ACMSF (Advisory Committee on the Microbiological Safety of Food). (1992). Report on vacuum packaging and associated processes. London, UK: Her Majesty’s Stationery Office.

    Google Scholar 

  • Agata, N., Ohta, M., Mori, M., & Isobe, M. (1995). A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiology Letters, 129, 17–20.

    CAS  Google Scholar 

  • Amezquita, A., Weller, C. L., Wang, L., Thippareddi, H., & Burson, D. E. (2005). Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham. International Journal of Food Microbiology, 101, 123–144.

    CAS  Google Scholar 

  • Ando, X., Suzuki, T., Sunagawa, H., & Oka, S. (1985). Heat resistance, spore germination and enterotoxigenicity of Clostridium perfringens. Microbiology and Immunology, 29, 317–326.

    CAS  Google Scholar 

  • Austin, J. W., & Dodds, K. L. (2001). Clostridium botulinum. In Y. H. Hui, M. D. Pierson, & R. J. Gould (Eds.), Foodborne diseases handbook (IInd edn., pp. 107–138). New York: Marcel Dekker.

    Google Scholar 

  • Baker, J. M., & Griffiths, M. W. (1993). Predictive modeling of psychrotrophic Bacillus cereus. Journal of Food Protection, 56, 684–688.

    Google Scholar 

  • Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23, 277–294.

    CAS  Google Scholar 

  • Baranyi, J., Robinson, T. P., Kaloti, A., & Mackey, B. M. (1995). Predicting growth of Brochothrix thermosphacta at changing temperature. International Journal of Food Microbiology, 27, 61–75.

    CAS  Google Scholar 

  • Bellara, S. R., McFarlane, C. M., Thomas, C. R., & Fryer, P. J. (2000). The growth of Escherichia coli in a food simulant during conduction cooling: combining engineering and microbiological modeling. Chemical Engineering Science, 55, 6085–6095.

    CAS  Google Scholar 

  • Benedict, R. C., Partridge, T., Wells, D., & Buchanan, R. L. 1993. Bacillus cereus: aerobic growth kinetics. Journal of Food Protection, 56, 211–214.

    Google Scholar 

  • Betts, G. D. (1998). Critical factors affecting the safety of minimally processed chilled foods. In S. Ghazala (Ed.), Sous vide and cook-chill processing for the food industry. Gaithersburg, MD: Aspen Publishers, Inc.

    Google Scholar 

  • Bhunia, A. K. (2008). Foodborne microbial pathogens-mechanisms and pathogenesis (pp. 158–159). New York: Springer.

    Google Scholar 

  • Cato, E. P., George, W. L., & Finegold, S. M. (1986). Section 13: Genus Clostridium. In P. H. Sneath, N. S. Mair, M. E. Sharpe, & J. G. Holts (Eds.), Bergey’s manual of systematic bacteriology (p. 1141). Baltimore, MD: Williams and Wilkens.

    Google Scholar 

  • Choma, C., Clavel, H., Dominguez, H., Razafindramboa, N., Soumille, H., Nguyen-the, C. et al. (2000). Effect of temperature on growth characteristics of Bacillus cereus TZ415. International Journal of Food Microbiology, 55, 73–77.

    CAS  Google Scholar 

  • Chorin, E., Thuault, D., Cleret, J. J., & Bourgeois, C. M. 1997. Modelling B. cereus growth. International Journal of Food Microbiology, 38, 229–234.

    CAS  Google Scholar 

  • Church I. (1998). The sensory quality, microbiological safety and shelf-life of packaged foods. In S. Ghazala (Ed.), Sous vide and cook-chill processing for the food industry. Gaithersburg, MD: Aspen Publishers, Inc.

    Google Scholar 

  • Creed, P. G. (1998). Sensory and nutritional aspects of sous vide processed foods. In S. Ghazala (Ed.), Sous vide and cook-chill processing for the food industry (pp. 57–88). Gaithersburg, MD: Aspen Publishers, Inc.

    Google Scholar 

  • Daniels, R. W. (1991). Applying HACCP to new-generation refrigerated foods at retail and beyond. Food Technology, 45, 122, 124.

    Google Scholar 

  • Dodds, K. L. (1993).Clostridium botulinum in the environment. In A. H. W. Hauschild, & K. L. Dodds (Eds.), Clostridium botulinum, Ecology and Control in Foods (pp. 21–51). New York: Marcel Dekker.

    Google Scholar 

  • DoH (Department of Health). (1989). Chilled and frozen foods. Guidelines on cook-chill and cook-freeze catering systems. HMSO: London.

    Google Scholar 

  • ECFF (European Chilled Food Federation). (1996). Guidelines for the Hygienic Manufacture of Chilled Foods. Helsinki: The European Chilled Food Federation.

    Google Scholar 

  • Elliott, P. H., & Schaffner, D. W. (2001). Germination, growth, and toxin production of nonproteolytic Clostridium botulinum as affected by multiple barriers. Journal of Food Science, 66, 575–579.

    CAS  Google Scholar 

  • Fain, A. L., Line, J. E., Moran, A. B., Martin, L. M., Lechowich, R. V., Carosella, J. M. et al. (1991). Lethality of heat to Listeria monocytogenes Scott A: D value and Z value determinations in ground beef and turkey. Journal of Food Protection, 54, 756–761.

    Google Scholar 

  • Farber, J. M., Pagotto, F., & Sherf, C. (2007). Incidence and behavior of Listeria monocytogens in meat products. In E. H. Marth, & E. T. Ryser (Eds.), Listeria, listeriosis and food safety (3rd edn., pp. 503–570). New York: CRC Press.

    Google Scholar 

  • Farber, J. M., Daley, E. M., MackKie, M. T., & Limerick, B. (2000). A small outbreak of listeriosis potentially linked to the consumption of imitation crab meat. Letters in Applied Microbiology, 31, 100–104.

    CAS  Google Scholar 

  • Fernandez, P. S., Baranyi, J., & Peck, M. W. (2001). A predictive model of growth from spores of non-proteolytic Clostridium botulinum in the presence of different CO2 concentrations as influenced by chill temperature, pH and NaCl. Food Microbiology, 18, 453–461.

    CAS  Google Scholar 

  • Frye, D. M., Zweig, R., Sturgeon, J., Tormey, M., LeCavalier, M., Lee, I., et al. (2002). An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes. Clinical Infectious Diseases, 35, 943–949.

    Google Scholar 

  • Gellin, B. G., & Broome, C. V. (1989). Listeriosis. Journal of American Medical Association, 261, 1313–132.

    CAS  Google Scholar 

  • Genigeorgis, C. A., Meng, J., & Baker, D. A. (1991). Behavior of nonproteolytic Clostridium botulinum type B and E spores in cooked turkey and modeling lag phase and probability of toxigenesis. Journal of Food Science, 56, 373–379.

    Google Scholar 

  • Gibson, A. M., Bratchell, N., & Roberts, T. A. (1987). The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. Journal of Applied Bacteriology, 62, 479–490.

    CAS  Google Scholar 

  • Gibson, A. M., & Eyles, J. M. (1989). Changing perceptions of foodborne botulism. CSIRO Food Research Quarterly, 49, 46–59.

    Google Scholar 

  • Gilbert, R. J., Mclauchlin, J., & Velani, S. K. (1993). The contamination of pate by Listeria monocytogenes in England and Wales in 1989 and 1990. Epidemiology and Infection, 110, 543–555.

    CAS  Google Scholar 

  • Gould, G. W. (1996). Conclusions of the ECFF botulinum working party. In Proceedings of second European symposium on sous vide, 10–12 April 1996 (pp. 173–180), Alma University Restaurants/FAIR, University of Leuven, Belgium.

    Google Scholar 

  • Graham, A. F., Mason, D. R., Maxwell, F. J., & Peck, M. W. (1997). Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperatures. Letters in Applied Microbiology, 24, 95–100.

    CAS  Google Scholar 

  • Grant, I. R., & M. F. Patterson (1995). Combined effect of gamma radiation and heating on the destruction of Listeria monocytogenes and Salmonella Typhimurium in cook-chill roast beef and gravy. International Journal of Food Microbiology, 27, 117–128.

    CAS  Google Scholar 

  • Granum, P. E. (1990). Clostridium perfringens toxins involved in food poisoning. International Journal of Food Microbiology, 10, 101–112.

    CAS  Google Scholar 

  • Granum, P. E., Bryenstad, S., & Kramer, J. M. (1993). The enterotoxin from Bacillus cereus: production and biochemical characterization. Netherlands Milk and Dairy Journal, 47, 63–70.

    CAS  Google Scholar 

  • Granum, P. E., & Baird Parker, T. C. (2000). Bacillus species. In B. M. Lund, T. C., Baird Parker, & G. W. Gould (Eds.), The microbiological safety and quality of foods (Vol. 2, pp. 1029–1039). Frederick, MD: Aspen Publishers.

    Google Scholar 

  • Granum. P. E. (1994). Bacillus cereus and its toxins. Journal of Applied Bacteriology, Symposium Supplement, 76, 61S–66S.

    Google Scholar 

  • Harris, R. D. (1989). Kraft builds safety into next generation refrigerated foods. Food Process, 50, 111–112, 114.

    Google Scholar 

  • Hatheway, C. L. (1993). Clostridium botulinum and other clostridia that produce botulinum enterotoxin. In A. H. W. Hauschild, & K. L. Dodds (Eds.), Clostridium botulinum, ecology and control in foods (pp. 3–20). New York: Marcel Dekker.

    Google Scholar 

  • Huang, L. (2002). Description of growth of Clostridium perfringens in cooked beef with multiple linear models. Food Microbiology, 19, 577–587.

    Google Scholar 

  • Huang, L. (2003). Dynamic simulation of Clostridium perfringens growth in cooked ground beef. International Journal of Food Microbiology, 87, 217–227.

    Google Scholar 

  • Hudson, J. A., Mott, S. J., & Penney, N. (1994). Growth of Listeria monocytogenes, Aeromonas hydrophila, and Yersinia enterocolitica on vacuum and saturated carbon dioxide controlled atmosphere–packaged sliced roast beef. Journal of Food Protection, 57, 204–208.

    Google Scholar 

  • Hyytiä-Trees, E., Skyttä, E., Mokkila, M., Kinnunen, A., Lindström, M., Lähteenmäki, L. et al. (2000). Safety evaluation of sous vide-processed products with respect to nonproteolytic Clostridium botulinum by use of challenge studies and predictive microbiological models. Applied and Environmental Microbiology, 66, 223–229.

    Google Scholar 

  • International Commission on Microbiological Specifications for Foods. (1996a). Bacillus cereus. In T. A. Roberts., T. C. Baird Parker, & R. B. Tompkin (Eds.), Microorganisms in foods 5, Characteristics of microbial pathogens (pp. 20–35). New York: Blackie Academic & Professional.

    Google Scholar 

  • International Commission on Microbiological Specifications for Foods. (1996b). Clostridium perfringens. In T. A. Roberts., T. C. Baird Parker, & R. B. Tompkin (Eds.), Microorganisms in foods 5, characteristics of microbial pathogens (pp. 112–125). New York: Blackie Academic & Professional.

    Google Scholar 

  • International Commission on Microbiological Specifications for Foods. (1996c). Listeria monocytogenes. In T. A. Roberts., T. C. Baird Parker, & R. B. Tompkin (Eds.), Microorganisms in foods 5, characteristics of microbial pathogens (pp. 141–182). New York: Blackie Academic & Professional.

    Google Scholar 

  • Jacquet, C., Catimel, B., Brosch, R., Buchrieser, C., Dehaumont, P., Goulet, V. et al. (1995). Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992. Applied and Environmental Microbiology, 61, 2242–3346.

    CAS  Google Scholar 

  • Johnson, J. L., Doyle, M. P., Cassens, R. G., & Schoeni, J. L. (1988). Fate of Listeria monocytogenes in experimentally infected cattle and in hard salami. Applied and Environmental Microbiology, 54, 497–501.

    CAS  Google Scholar 

  • Juneja, V. K. (1998). Hazards associated with non-proteolytic Clostridium botulinum and other spore-formers in extended-life refrigerated foods. In S. Ghazala (Ed.), Sous vide and cook-chill processing for the food industry (pp. 234–273). Gaithersburg, MD: Aspen Publishers, Inc.

    Google Scholar 

  • Juneja, V. K., Marmer, B. S., Phillips, J. G., & Palumbo, S. A. (1996). Interactive effects of temperature, initial pH, sodium chloride, and sodium pyrophosphate on the growth kinetics of Clostridium perfringens. Journal of Food Protection, 59, 963–968.

    Google Scholar 

  • Juneja, V. K., Whiting, R. C., Marks, H. M., & Snyder, O. P. (1999). Predictive model for growth of Clostridium perfringens at temperatures applicable to cooling of cooked meat. Food Microbiology, 16, 335–349.

    Google Scholar 

  • Kalish, F. (1991). Extending the HACCP concept to product distribution. Food Technology, 45, 119–120.

    Google Scholar 

  • Kerr, K. G., Birkenhead, D., & Seale, K. (1993). Prevalence of Listeria spp. on the hands of food workers. Journal of Food Protection, 56, 525–527.

    Google Scholar 

  • Konuma, H., Shinagawa, K., & Tokumaru, M. (1988). Occurrence of Bacillus cereus in meat products, raw meats and meat additives. Journal of Food Protection, 51, 324–326.

    Google Scholar 

  • Kramer, J. M., & Gilbert, R. J. (1989). Bacillus cereus and other Bacillus species. In M. P. Doyle (Ed.), Foodborne bacterial pathogens (pp. 21–70). New York: Marcel Dekker.

    Google Scholar 

  • Labbe, R. G., & Huang, T. H. (1995). Generation times and modeling of enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens in laboratory media and ground beef. Journal of Food Protection, 58, 1303–1306.

    Google Scholar 

  • Labbe, R. G. (2000). Clostridium perfringens. In B. M. Lund, T. C. Baird Parker, & G. W. Gould (Eds.), In The microbiological safety and quality of foods (Vol. 2, pp. 1110–1135). Frederick, MD: Aspen Publishers.

    Google Scholar 

  • Labbe, R. G., & Juneja, V. K. (2006). Clostridium perfringens gastroenteritis. In H. P. Riemann, & D. O. Cliver (Eds.), Foodborne infections and intoxications (3rd edn., pp. 137–184). New York: Academic Press.

    Google Scholar 

  • Larson, A. E., Johnson, E. A., & Nelson, J. H. (1999). Survival of Listeria monocytogenes in commercial cheese brines. Journal of Dairy Science, 82, 860–1868.

    Google Scholar 

  • Lawrence, L., & Gilmour, A. (1995). Characterization of Listeria monocytogenes isolated from poultry products and from the poultry processing environment by random amplification of polymorphic DNA and multilocus enzyme electrophoresis. Applied and Environmental Microbiology, 61, 2139–2144.

    CAS  Google Scholar 

  • Legan, J. D., Seman, D. L., Milkowski, A. L., Hirschey, J. A., & Vandeven, M. H. (2004). Modeling the growth boundary of Listeria monocytogenes in ready-to-eat cooked meat products as a function of the product salt, moisture, potassium lactate, and sodium diacetate concentrations. Journal of Food Protection, 67, 2195–2204.

    CAS  Google Scholar 

  • Le Marc, Y., Pin, C., & Baranyi, J. (2005). Methods to determine the growth domain in a multidimensional environmental space. International Journal of Food Microbiology, 100, 3–12.

    Google Scholar 

  • Lindroth, S. E., & Genigeorgis, C. A. (1986). Probability of growth and toxin production by nonproteolytic Clostridium botulinum in rockfish stored under modified atmospheres. International Journal of Food Microbiology, 3, 167–181.

    CAS  Google Scholar 

  • Lindström, M., Mokkila, M., Skyttä, E., Hyytiä-Trees, E., Lähteenmäki, L., Sebastian, H., et al. (2001). Inhibition of growth of nonproteolytic Clostridium botulinum type b in sous vide cooked meat products is achieved by using thermal processing but not Nisin. Journal of Food Protection, 64, 838–844.

    Google Scholar 

  • Lund, B. M., & Peck, M. W. (2000). Clostridium botulinum. In B. M. Lund, T.C., Baird Parker, & G. W. Gould (Eds.), The microbiological safety and quality of foods (Vol. 2, pp. 1057–1109). Frederick, MD: Aspen Publishers.

    Google Scholar 

  • McClure, P. J., Cole, M. B., & Smelt, J. P. P. M. (1994). Effects of water activity and pH on growth of Clostridium botulinum. Journal of Applied Bacteriology, Symposium Supplement, 76, 105S–114S.

    Google Scholar 

  • McMeekin, T. A., J. Olley, T. Ross., & D. A. Ratkowsky. (1993). Predictive microbiology: theory and application. Taunton: Research Studies Press.

    Google Scholar 

  • Mead, P. S., Vance Dietz, L. S., McCaig, L. F., Bresee, J. S., Shapiro, C. M. Griffin, P. M., et al. (1999). Food-Related Illness and Death in the United States. Emerging Infectious Diseases, 5, 607–625.

    CAS  Google Scholar 

  • Miller, A. J. (1992). Combined water activity and solutes effect on growth and survival of Listeria monocytogenes Scott A. Journal of Food Protection, 55, 414–418.

    CAS  Google Scholar 

  • Ministère de ĺ Agriculture. (1974). Réglementation des conditions d'hygiène relatives à la préparation., la conservation, la distribution et la vente des plats cuisinés à l'avance (Arrêtê du 26 Juin 1974). Journal Officiel de la Republique Française, 16 juillet 1974, 7397–7399.

    Google Scholar 

  • Ministère de ĺ Agriculture. (1988). Prolongation de la dureé de vie des plats cuisinés à ĺavance , modification du protocole permettant d'obtenir les autorisations (Note de Service DGAL/SVHA/N88/8106 du 31 Mai 1988), Service Vétérinaire d'Hygiéne Alimetaire, Paris.

    Google Scholar 

  • Monsalve, D. (2008). Development of predictive models for the growth of Listeria monocytogenes on ready-to-eat meat and poultry products (Doctoral dissertation, University of Nebraska, Lincoln, 2008).

    Google Scholar 

  • Nissen, J., Rosnes, J. T., Brendehaug, J., & Kleiberg, G. H. (2002). Safety evaluation of sous-vide processed ready meals. Letters in Applied Microbiology, 35, 433–438.

    CAS  Google Scholar 

  • Nolan, D. A., Chamblin, D. C., & Troller, J. A. (1992). Minimal water activity levels for growth and survival of Listeria monocytogenes and Listeria innocua. International Journal of Food Microbiology, 16, 323–335.

    CAS  Google Scholar 

  • Olmez, H. K., & Aran, N. (2005). Modeling the growth kinetics of Bacillus cereus as a function of temperature, pH, sodium lactate and sodium chloride concentrations. International Journal of Food Microbiology, 98, 135–143.

    Google Scholar 

  • Painter, J., & Slustker, L. (2007). Listeriosis in humans. In E. H. Marth, & E. T. Ryser (Eds.), Listeria, listeriosis and food safety (3rd edn., pp. 85–109). New York: CRC Press.

    Google Scholar 

  • Parkinson, N. G., & Ito, K. A. (2006). Clostridium botulinum. In H. P. Riemann, & D. O. Cliver (Eds.), Foodborne Infections and Intoxications (3rd edn., pp. 485–521). New York: Academic Press.

    Google Scholar 

  • Peck, M. W. (2006). Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? Journal of Applied Microbiology, 101, 556–570.

    CAS  Google Scholar 

  • Petran, R. L., & Zottola, E. A. (1989). A study of factors affecting growth and survival of Listeria monocytogenes Scott A. Journal of Food Science, 54, 458–460.

    CAS  Google Scholar 

  • Phan-Thanh, L. (1998). Physiological and biochemical aspects of the acid survival of Listeria monocytogenes. Journal of General and Applied Microbiology, 44, 183–191.

    CAS  Google Scholar 

  • Pociecha, J., Smith, Z., & Manderson, G. J. (1991). Incidence of Listeria monocytogenes in meat production environments of a South Island (New Zealand) mutton slaughter house. International Journal of Food Microbiology, 13, 321–327.

    CAS  Google Scholar 

  • Quintavalla, S., & Parolari, G. 1993. Effects of temperature, water activity and pH on the growth of Bacillus cells and spores: A response surface methodology study. International Journal of Food Microbiology, 19, 207–216.

    CAS  Google Scholar 

  • Ranken, M. D. 2000. Handbook of meat product technology. Oxford, UK: Blackwell Science Ltd.

    Google Scholar 

  • Ratkowsky, D. A. (2002). Some examples of, and some problems with the use of nonlinear logistic regression in predictive food microbiology. International Journal of Food Microbiology, 73, 119–125.

    CAS  Google Scholar 

  • Rhodehamel, E. J. (1992). FDA’s concerns with sous vide processing. Food Technology 46, 73–76.

    Google Scholar 

  • Roberts, T. A., Gibson, A., & Robinson, A. (1981). Prediction of toxin production by Clostridium botulinum in pasteurized pork slurry. Journal of Food Technology, 16, 337–355.

    CAS  Google Scholar 

  • Rocourt, J., & Buchrieser, C. (2007). The Genus Listeria and Listeria monocytogenes: Phylogenetic position, taxonomy and identification. In E. H. Marth, & E. T. Ryser (Eds.), Listeria, Listeriosis and Food Safety (3rd edn., pp. 1–20). New York: CRC Press.

    Google Scholar 

  • Rogers, A. M., & Montville, T. J. (1994). Quantification of factors which influence nisin’s inhibition of Clostridium botulinum 56A in a model food system. Journal of Food Science, 59, 663–668, 686.

    CAS  Google Scholar 

  • Sauders, B. D., & Wiedmann, M. (2007). Ecology of Listeria species and L. monocytogens in the natural environment. In E. H. Marth, & E. T. Ryser (Eds.), Listeria, listeriosis and food safety (3rd edn., pp. 21–53). New York: CRC Press.

    Google Scholar 

  • Schaffner, D. W., Ross, W. H., & Montville, T. J. (1998). Analysis of the influence of environmental parameters on Clostridium botulinum time-to-toxicity by using three modeling approaches. Applied and Environmental Microbiology, 64, 4416–4422.

    CAS  Google Scholar 

  • Seman, D. L., Borger, A. C., Meyer, J. D., Hall, P. A., & Milkowski, A. L. (2002). Modeling the growth of Listeria monocytogenes in cured ready-to-eat processed meat products by manipulation of sodium chloride, sodium diacetate, potassium lactate, and product moisture content. Journal of Food Protection, 65, 651–658.

    CAS  Google Scholar 

  • Seman, D. L., Quickert, S. C., Borger, A. G., & Meyer, J. D. (2008). Inhibition of Listeria monocytogenes growth in cured ready-to-eat meat products by use of sodium benzoate and sodium diacetate. Journal of Food Protection, 71, 1386–1392.

    CAS  Google Scholar 

  • Shapiro, R. L., Hatheway, C. L., & Swerdlo, D. L. (1998). Botulism in the United States: a clinical and epidemiologic review. Annals of International Medicine, 129, 221–228.

    CAS  Google Scholar 

  • Smart, J., Roberts, T. A., Stringer, F., & Shah, N. (1979). The incidence and serotypes of Clostridium perfringens on beef, pork, and lamb carcasses. Journal of Applied Bacteriology, 46, 377–383.

    CAS  Google Scholar 

  • Smith, L. D. S., & Sugiyama, H. (1988). Botulism: The organism, its toxins, the disease (2nd edn). Springfield, IL: Charles C Thomas.

    Google Scholar 

  • Smith, S., & Schaffner, D. M. (2004). Evaluation of a predictive model for Clostridium perfringens growth during cooling. Journal of Food Protection, 67, 1133–1137.

    Google Scholar 

  • SVAC (Sous vide Advisory Committee). (1991). Codes of Practice for sous vide catering systems. Tetbury, UK.

    Google Scholar 

  • Ter Steeg, P. F., & Cuppers, H. G. A. M. (1995). Growth of proteolytic Clostridium botulinum in process cheese products: II. predictive modeling. Journal of Food Protection, 58, 1100–1108.

    Google Scholar 

  • Thippareddi, H., Juneja, V. K., Phebus, R. K., Marsden, J. L., & Kastner, C. L. (2003). Control of Clostridium perfringens germination and outgrowth by buffered sodium citrate during chilling of roast beef and injected pork. Journal of Food Protection; 66, 376–381.

    CAS  Google Scholar 

  • USDA-FSIS. (1999). Performance Standards for the production of certain meat and poultry products, Final Rule. FSIS Directive 7111.1, U. S. Department of Agriculture, Food Safety and Inspection Service, Washington, D.C. Federal Register, 64, 732–749.

    Google Scholar 

  • USDA-FSIS. (2000). Food additives for use in meat and poultry products: sodium diacetate, sodium acetate, sodium lactate and potassium lactate: Direct final rule. Federal Register, 65, 3121–3123.

    Google Scholar 

  • USDA-FSIS. (2003). Control of Listeria monocytogenes in Ready-to-Eat Meat and Poultry Products; Final Rule. 9 CFR Part 430 U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, D.C.

    Google Scholar 

  • Van der Elen, A. M. G., & Snijders, J. M. A. (1993). Critical points in meat production lines regarding the introduction of Listeria monocytogenes. Veterinary Quarterly, 15, 143–145.

    Google Scholar 

  • Whiting, R. C., & Call, J. E. (1993). Time of growth model for proteolytic Clostridium botulinum. Food Microbiology, 10, 295–301.

    Google Scholar 

  • Whiting, R. C., & Oriente, J. C. (1997). Time-to-turbidity model for nonproteolytic type B Clostridium botulinum. International Journal of Food Microbiology, 36, 49–60.

    CAS  Google Scholar 

  • Whiting, R. C. (1995). Microbial modeling in foods. Critical Reviews in Food Science and Nutrition, 35, 465–494.

    Google Scholar 

  • Willardsen, R. R., Busta, F. F., & C. E. Allen. (1979). Growth of Clostridium perfringens in three different beef media and fluid thioglycollate medium at static and constantly rising temperatures. Journal of Food Protection, 42, 144–148.

    Google Scholar 

  • Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van't Riet K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881.

    CAS  Google Scholar 

  • Zwietering, M. H., De Koos, J. T., Hasenack, B. E., De Wit, J. C., & van’t Riet, K. (1991). Modeling of the bacterial growth as a function of temperature. Applied and Environmental Microbiology, 57, 1094–1101.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshavardhan Thippareddi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thippareddi, H., Subbiah, J., Korasapati, N.R., Sanchez-Plata, M.X. (2009). Predictive Modeling of Pathogen Growth in Cooked Meats. In: Toldrá, F. (eds) Safety of Meat and Processed Meat. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89026-5_22

Download citation

Publish with us

Policies and ethics