Skip to main content

Histological Basis Of Mr/Optical Imaging Of Human Melanoma Mouse Xenografts Spanning A Range Of Metastatic Potentials

  • Conference paper
Oxygen Transport to Tissue XXX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 645))

Abstract

Predicting tumor aggressiveness will greatly facilitate cancer treatment. We have previously reported investigations utilizing various MR/optical imaging methods to differentiate human melanoma mouse xenografts spanning a range of metastatic potentials. The purpose of this study was to explore the histological basis of the previously reported imaging findings. We obtained the cryogenic tumor sections of three types of human melanoma mouse xenografts with their metastatic potentials falling in the rank order A375P<A375M<C8161. Both H&E and DAPI counter-stained TUNEL analysis showed distinct core-rim difference in aggressive tumors, while the core has apparently many viable cells forming structure of vascular-like networks and the rim appears viable-cell dense. The least aggressive ones (A375P) are relatively more homogenous without distinct core-rim difference. However, our previous study showed the core of more aggressive melanoma has higher Fp/NADH redox ratio, indicative of nutritional deprivation. Additionally, the low perfusion/blood vessel permeability measured previously by DCE-MRI indicated these cells should be under starvation presumably accompanied with more cell death. Thus, it remains an open question what the survival status of the cells in the core of more aggressive melanoma is. We are currently investigating whether these cells are in autophagic state, a possible cell survival mechanism under starvation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Hendrix, E. A. Seftor, Y. W. Chu, R. E. Seftor, R. B. Nagle, K. M. McDaniel, S. P. Leong, K. H. Yohem, A. M. Leibovitz, F. L. Meyskens, Jr. and et al., Coexpression of vimentin and keratins by human melanoma tumor cells: correlation with invasive and metastatic potential, Journal of the National Cancer Institute 84(3), 165-174 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. J. M. Kozlowski, I. R. Hart, I. J. Fidler and N. Hanna, A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice, Journal of the National Cancer Institute 72(4), 913-917 (1984).

    PubMed  CAS  Google Scholar 

  3. D. R. Welch, J. E. Bisi, B. E. Miller, D. Conaway, E. A. Seftor, K. H. Yohem, L. B. Gilmore, R. E. Seftor, M. Nakajima and M. J. Hendrix, Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line, International Journal of Cancer 47(2), 227-237 (1991).

    Article  CAS  Google Scholar 

  4. M. J. Hendrix, E. A. Seftor, Y. W. Chu, K. T. Trevor and R. E. Seftor, Role of intermediate filaments in migration, invasion and metastasis, Cancer Metastasis Rev 15(4), 507-525 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. E. A. Seftor, R. E. Seftor and M. J. Hendrix, Selection of invasive and metastatic subpopulations from a heterogeneous human melanoma cell line, Biotechniques 9(3), 324-331 (1990).

    PubMed  CAS  Google Scholar 

  6. M. J. Hendrix, E. A. Seftor, R. E. Seftor and I. J. Fidler, A simple quantitative assay for studying the invasive potential of high and low human metastatic variants, Cancer Letters 38, 137-147 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. L. Z. Li, R. Zhou, T. Zhong, L. Moon, E. J. Kim, H. Qiao, S. Pickup, M. J. Hendrix, D. Leeper, B. Chance and J. D. Glickson, Predicting melanoma metastatic potential by optical and magnetic resonance imaging, Advances in Experimental Medicine and Biology 599,67-78 (2007).

    Article  PubMed  Google Scholar 

  8. A. J. Maniotis, R. Folberg, A. Hess, E. A. Seftor, L. M. Gardner, J. Pe’er, J. M. Trent, P. S. Meltzer and M. J. Hendrix, Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry, American Journal of Pathology 155(3), 739-752 (1999).

    PubMed  CAS  Google Scholar 

  9. M. J. Hendrix, E. A. Seftor, A. R. Hess and R. E. Seftor, Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma, Nature Reviews. Cancer 3(6), 411-421 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. M. J. Hendrix, E. A. Seftor, D. A. Kirschmann, V. Quaranta and R. E. Seftor, Remodeling of the microenvironment by aggressive melanoma tumor cells, Annals of the New York Academy of Sciences 995,151-161 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. B. Chance, Flavoproteins of mitochondrial fatty acid oxidation in Flavins and Flavoproteins, edited by E. C. Slater (Elsevier, 1966), pp498-510.

    Google Scholar 

  12. B. Chance and H. Baltscheffsky, Respiratory Enzymes in Oxidative Phosphorylation. VII. Binding of IntramitochondrialReduced Pyridine Nucleotide, The Journal of Biological Chemistry 233(3), 736-739 (1958).

    PubMed  CAS  Google Scholar 

  13. M. Ranji, S. Kanemoto, M. Matsubara, M. A. Grosso, J. H. Gorman, 3rd, R. C. Gorman, D. L. Jaggard and B. Chance, Fluorescence spectroscopy and imaging of myocardial apoptosis, Journal of Biomedical Optics 11(6), 064036 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. K. Degenhardt, R. Mathew, B. Beaudoin, K. Bray, D. Anderson, G. Chen, C. Mukherjee, Y. Shi, C. Gelinas, Y. Fan, D. A. Nelson, S. Jin and E. White, Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis, Cancer Cell 10(1), 51-64 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. V. Karantza-Wadsworth, S. Patel, O. Kravchuk, G. Chen, R. Mathew, S. Jin and E. White, Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis, Genes & Development 21(13), 1621-1635 (2007).

    Article  CAS  Google Scholar 

  16. J. J. Lum, D. E. Bauer, M. Kong, M. H. Harris, C. Li, T. Lindsten and C. B. Thompson, Growth factor regulation of autophagy and cell survival in the absence of apoptosis, Cell 120(2), 237-248 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. A. L. Edinger and C. B. Thompson, Death by design: apoptosis, necrosis and autophagy, Current Opinion in Cell Biology 16(6), 663-669 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. J. Marx, Autophagy: Is It Cancer’s Friend or Foe? Science 312(5777), 1160-1161 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Xu, H.N., Zhou, R., Nioka, S., Chance, B., Glickson, J.D., Li, L.Z. (2009). Histological Basis Of Mr/Optical Imaging Of Human Melanoma Mouse Xenografts Spanning A Range Of Metastatic Potentials. In: Liss, P., Hansell, P., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXX. Advances in Experimental Medicine and Biology, vol 645. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85998-9_37

Download citation

Publish with us

Policies and ethics