Skip to main content

Abstract

The blood-brain barrier (BBB) mediates interactions between the immune and central nervous systems in several ways and is central to many mechanisms that form communication pathways within the neuroimmune axis. Here, we briefly review the chief types of interactions. Cytokines and immune cells cross the BBB by regulated mechanisms. Cytokines alter BBB characteristics, including the integrity of the BBB, its transport systems, and its ability to control immune cell trafficking. The cells that comprise the BBB secrete cytokines, prostaglandins, nitric oxide, and other immuneactive factors. Such secretion is both constituitive and inducible, depending on the substance secreted. Secretion is also polarized; that is, secretion can be from either the luminal or abluminal membrane. This raises the possibility that the BBB may recieve signal at one membrane and secrete cytokine from the other as a mechanism of communication within the neuroimmune axis. In brief, the BBB is a central player in a number of mechanisms and pathways that comprise the neuroimmune axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, KA, Lichtman, A, Prober, JS. Effector mechanisms of immune responses. 2000; In: Cellular and Molecular Immunology 4th Edition (Editors: KA Abbas, JS Prober) Saunders, Philadelphia.

    Google Scholar 

  • Abbott, NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 2005; 25:5–23.

    Article  PubMed  Google Scholar 

  • Abbott, NJ, Ronnback, L, Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev 2006; 7:41–53.

    Article  CAS  Google Scholar 

  • Avison, MJ, Nath, A, Greene-Avison, R, Schmitt, FA, eenberg, RN, rgar, JR. Neuroimaging correlates of HIV-associated BBB compromise. J Neuroimmunol 2004; 157:140–146.

    Article  PubMed  CAS  Google Scholar 

  • Banks, WA. Physiology and pathophysiology of the blood-brain barrier: Implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirology 1999; 5:538–555.

    Article  CAS  Google Scholar 

  • Banks, WA. Blood-brain barrier transport of cytokines: A mechanism for neuropathology. Curr Pharm Design 2005; 11:973–984.

    Article  CAS  Google Scholar 

  • Banks, WA and Broadwell, RD. Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin and albumin: pharmacokinetic and morphological assessments. J Neurochem 1994; 62:2404–2419.

    PubMed  CAS  Google Scholar 

  • Banks, WA, Farr, SA, La Scola, ME, Morley, JE. Intravenous human interleukin-1〈 impairs memory processing in mice: Dependence on blood-brain barrier transport into posterior division of the septum. J Pharmacol Exp Ther 2001; 299:536–541.

    PubMed  CAS  Google Scholar 

  • Banks, WA and Kastin, AJ. Relative contributions of peripheral and central sources to levels of IL-1〈 in the cerebral cortex of mice: assessment with species-specific enzyme immunoassays. J Neuroimmunol 1997; 79:22–28.

    Article  PubMed  CAS  Google Scholar 

  • Banks, WA, Kastin, AJ, Akerstrom, V. HIV-1 protein gp120 crosses the blood-brain barrier: role of adsorptive endocytosis. Life Sci 1997; 61:L119–L125.

    Google Scholar 

  • Banks, WA, Kastin, AJ, Broadwell, RD. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 1995; 2:241–248.

    Article  PubMed  CAS  Google Scholar 

  • Banks, WA, Kastin, AJ, Gutierrez, EG. Penetration of interleukin-6 across the blood-brain barrier. Neurosci Lett 1994; 179:53–56.

    Article  PubMed  CAS  Google Scholar 

  • Banks, WA, Niehoff, ML, Zalcman, S. Permeability of the mouse blood-brain barrier to murine interleukin- 2: Predominance of a saturable efflux system. Brain Behav Immun 2004; 18:434–442.

    Article  PubMed  CAS  Google Scholar 

  • Banks, WA, Ortiz, L, Plotkin, SR, Kastin, AJ. Human interleukin (IL) 1〈, murine IL-1〈 and murine IL-1β are transported from blood to brain in the mouse by a shared saturable mechanism. J Pharmacol Exp Ther 1991; 259:988–996.

    PubMed  CAS  Google Scholar 

  • Basu, A, Krady, JK, Levison, SW. Interleukin-1: a master regulator of neuroinflammation. J Neurosci Res 2004; 78:151–156.

    Article  PubMed  CAS  Google Scholar 

  • Begley, DJ. ABC transporters and the blood-brain barrier. Curr Pharm Design 2004; 10:1295–1312.

    Article  CAS  Google Scholar 

  • Betz, AL and Goldstein, GW. Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science 1978; 202:225–227.

    Article  PubMed  CAS  Google Scholar 

  • Blasberg, RG, Fenstermacher, JD, Patlak, CS. Transport of 〈-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 1983; 3:8–32.

    PubMed  CAS  Google Scholar 

  • Blesch, A, Uy, HS, Grill, RJ, Cheng, JG, Patterson, PH, Tuszynski, MH. Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury. J Neurosci 1999; 19:3356–3366.

    Google Scholar 

  • Bradbury, M. The Concept of a Blood-Brain Barrier. 1979; John Wiley and Sons LTD, New York.

    Google Scholar 

  • Chen, G, Castro, WL, Chow, HH, Reichlin, S. Clearance of 125I-labelled interleukin-6 from brain into blood following intracerebroventricular injection in rats. Endocrinology 1997; 138:4830–4836.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G and Reichlin, S. Clearance of [125I]-tumor necrosis factor-〈 from the brain into the blood after intracerebroventricular injection into rats. Neuroimmunomodulation 1998; 5:261–269.

    Article  PubMed  CAS  Google Scholar 

  • Chen, P, Shibata, M, Zidovetzki, R, Fisher, M, Zlokovic, BV, Hofman, FM. Endothelin-1 and monocyte chemoattractant protein-1 modulation in ischemia and human brain-derived endothelial cell cultures. J Neuroimmunol 2001; 116:62–73.

    Article  PubMed  CAS  Google Scholar 

  • Christov, A, Ottman, JT, Grammas, P. Vascular inflammatory, oxidative and protease-based processes: implications for neuronal cell death in Alzheimer’s disease. Neurol Res 2004; 26:540–546.

    Article  PubMed  CAS  Google Scholar 

  • Davson, H and Segal, MB. Special aspects of the blood-brain barrier. 1996; 303–485.

    Google Scholar 

  • Di Gregorio, GB, Hensley, L, Lu, T, Ranganathan, G, Kern, PA. Lipid and carbohydrate metabolism in mice with a targeted mutation in the IL-6 gene: absence of development of age-related obesity. Am J Physiol-Endoc Metab 2004; 287:E182–E187.

    Article  Google Scholar 

  • Didier, N, Banks, WA, Creminon, C, Dereuddre-Bosquet, N, Mabondzo, A. HIV-1-induced production of endothelin-1 in an in vitro model of the human blood-brain barrier. Neuroreport 2002; 13:1179–1183.

    Article  PubMed  CAS  Google Scholar 

  • Dore-Duffy, P, Owen, C, Balabanov, R, Murphy, S, Beaumont, T, Rafols, JA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 2000; 60:55–69.

    Article  PubMed  CAS  Google Scholar 

  • Fabry, Z, Fitzsimmons, KM, Herlein, JA, Moninger, TO, Dobbs, MB, Hart, MN. Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J Neuroimmunol 1993; 47:23–34.

    Article  PubMed  CAS  Google Scholar 

  • Frigerio, S, Gelati, M, Ciusani, E, Corsini, E, Dufour, A, Massa, G, Salmaggi, A. Immunocompetence of human microvascular brain endothelial cells: cytokine regulation of IL-1beta, MCP-1, IL-10, sICAM-1 and sVCAM-1. J Neurol 1998; 245:727–730.

    Article  PubMed  CAS  Google Scholar 

  • Grammas, P and Ovase, R. Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol Aging 2001; 22:837–842.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, EG, Banks, WA, Kastin, AJ. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 1993; 47:169–176.

    Article  PubMed  CAS  Google Scholar 

  • Hofman, F, Chen, P, Incardona, F, Zidovetzki, R, Hinton, DR. HIV-tat protein induces the production of interleukin-8 by human brain-derived endothelial cells. J Neuroimmunol 1999; 94:28–39.

    Article  PubMed  CAS  Google Scholar 

  • Kastin, AJ, Akerstrom, V, Pan, W. Validity of multiple-time regression analysis in measurement of tritiated and iodinated leptin crossing the blood-brain barrier: meaningful controls. Peptides 2001; 22:2127–2136.

    Article  PubMed  CAS  Google Scholar 

  • Koistinaho, M and Koistinahi, J. Interactions between Alzheimer’s disease and cerebral ischemia- -focus on inflammation. Brain Res Brain Res Rev 2005; 48:240–250.

    Article  PubMed  CAS  Google Scholar 

  • Lai, CH and Kuo, KH. The critical component to establish in vitro BBB model: pericyte. Brain Res Rev 2005; 50:258–265.

    Article  PubMed  CAS  Google Scholar 

  • Lampl, Y, Fleminger, G, Gilad, R, Galron, R, Sarova-Pinhas, I, Sokolovsky, M. Endothelin in cerebrospinal fluid and plasma of patients in the early stages of ischemic stroke. Stroke 1997; 28:1951–1955.

    PubMed  CAS  Google Scholar 

  • Larson, SJ and Dunn, AJ. Behavioral effects of cytokines. Brain Behav Immun 2001; 15:371–387.

    Article  PubMed  CAS  Google Scholar 

  • Lee, G, Dallas, S, Hong, M, Bendayan, R. Drug transporters in the central nervous system: brain barriers and brain paranchyma considerations. Pharmacol Rev 2001; 53:569–596.

    PubMed  CAS  Google Scholar 

  • Lee, YW, Hennig, B, Fiala, M, Kim, KS, Toborek, M. Cocaine activates redox-regulated transcription factors and induces TNF-alpha expression in human brain endothelial cells. Brain Res 2001; 920:125–133.

    Article  PubMed  CAS  Google Scholar 

  • Liao, YF, Wang, BJ, Cheng, HT, Kuo, LH, Wolfe, MS. Tumor necrosis factor-alpha, interleukin-1- beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 2004; 279:49523–49532.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, JL and Banks, WA. Opiate modulation of IL-1alpha, IL-2, and TNF-alpha transport across the blood-brain barrier. Brain Behav Immun 2008 Oct; 22(7):1096–102.

    Google Scholar 

  • Maness, LM, Banks, WA, Zadina, JE, Kastin, AJ. Selective transport of blood-borne interleukin-1〈 into the posterior division of the septum of the mouse brain. Brain Res 1995; 700:83–88.

    Article  PubMed  CAS  Google Scholar 

  • Moinuddin, A, Morley, JE, Banks, WA. Regional variations in the transport of interleukin-1〈 across the blood-brain barrier in ICR and aging SAMP8 mice. Neuroimmunomodulation 2000; 8:165–170.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W, Banks, WA, Kastin, AJ. BBB permeability to ebiratide and TNF in acute spinal cord injury. Exp Neurol 1997; 146:367–373.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W, Banks, WA, Kastin, AJ. Permeability of the blood-brain barrier and blood-spinal cord barriers to interferons. J Neuroimmunol 1997; 76:105–111.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W, Banks, WA, Kennedy, MK, Gutierrez, EG, Kastin, AJ. Differential permeability of the BBB in acute EAE: enhanced transport of TNF-〈. Am J Physiol 1996; 271:E636–E642.

    PubMed  CAS  Google Scholar 

  • Pan, W, Cain, C, Yu, Y, Kastin, AJ. Receptor-mediated transport of LIF across the blood-spinal barrier is upregulated after spinal cord injury. J Neuroimmunol 2006; 174:119–125.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W and Kastin, AJ. Increase in TNF alpha transport after SCI is specific for time, region, and type of lesion. Exp Neurol 2001; 170:357–363.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W, Kastin, AJ, Brennan, JM. Saturable entry of leukemia inhibitory factor from blood to the central nervous system. J Neuroimmunol 2000; 106:172–180.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, WM. Molecular biology of the blood-brain barrier. Mol Biotechnol 2005; 30:57–70.

    Article  PubMed  CAS  Google Scholar 

  • Patlak, CS, Blasberg, RG, Fenstermacher, JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3:1–7.

    PubMed  CAS  Google Scholar 

  • Persidsky, Y, Ramirez, SH, Haorah, J, Kanmogne, GD. Blood-brain barrier: Structural components and function under physiologic and pathologic conditions. Neuroimmune Pharmacol 2006; 1:223–236.

    Article  Google Scholar 

  • Qi, Y, Takahashi, N, Hileman, SM, Patel, HR, Berg, AH, Pajvani, UB, Scherer, PE, Ahima, S. Adiponectin acts in the brain to decrease body weight. Nature Medicine 2004; 10:524–529.

    Article  PubMed  CAS  Google Scholar 

  • Qin, Y and Sato, TN. Mouse multidrug resistance 1a/3 gene is the earliest known endothelial cell differentiation marker during blood-brain barrier development. Dev Dynamics 1995; 202: 172–180.

    CAS  Google Scholar 

  • Quan, N and Banks, WA. Brain-immune communication pathways. Brain Behav Immun 2007; 21:727–735.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, SI. Blood Brain Barrier in Physiology and Medicine. 1976; Raven Press, New York.

    Google Scholar 

  • Reese, TS and Karnovsky, MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967; 34:207–217.

    Article  PubMed  CAS  Google Scholar 

  • Reyes, TM, Fabry, Z, Coe, CL. Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res 1999; 851:215–220.

    Article  PubMed  CAS  Google Scholar 

  • Rolinski, B, Heigermoser, A, Lederer, E, Bogner, JR, Loch, O, Goebel, FD. Endothelin-1 elevated in the cerebrospinal fluid of HIV-infected patients with encephalopathy. Infection 1999; 27:244–247.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S, Balasubrmanian, S, Sumandeep, S, Charboneau, R, Wang, J, Melnyk, D, Beilman, GJ, Vatassery, R, Barke, RA. Morphine directs T cells towards T(H2) differentiation. Surgery 2001; 130:304–309.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S, Loh, HH, Barke, RA. Morphine-induced suppression of thymocyte proliferation is mediated by inhibition of IL-2 synthesis. Adv Exp Med Biol 1995; 373:41–48.

    PubMed  CAS  Google Scholar 

  • Spector, R and Johanson, CE. The mammalian choroid plexus. Sci Am 1989; 261:68–74.

    Article  PubMed  CAS  Google Scholar 

  • Spranger, J, Verma, S, Gohring, I, Bobbert, T, Seifert, J, Sindler, AL, Pfeiffer, A, Hileman, SM, Tschop, M, Banks, WA. Adiponectin does not cross the blood-brain barrier, but modifies cytokine expression of brain endothelial cells. Diabetes 2006; 55:141–147.

    Article  PubMed  CAS  Google Scholar 

  • Stenlof, K, Wernstedt, I, Fjallman, T, Wallenius, V, Wallenius, K, Jansson, JO. Internleukin-6 levels in the central nervous system are negatively correlated with fat mass in overwieght/ obese subjects. J Clin Endocrinol Metab 2003; 88:4379–4383.

    Article  PubMed  CAS  Google Scholar 

  • Stins, MF, Shen, Y, Huang, SH, Gilles, F, Kalra, VK, Kim, KS. Gp120 activates children’s brain endothelial cells via CD4. J Neurovirol 2001; 7:125–134.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H, Sato, S, Suzuki, Y, Takekoshi, K, Ishihara, N, Shimoda, S. Increased endothelin concentration in CSF from patients with subarachnoid hemorrhage. Acta Neurol Scand 1990; 81:553–554.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, EM. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet 2002; 41:81–92.

    Article  PubMed  CAS  Google Scholar 

  • Vadeboncoeur, N, Segura, M, Al-Numani, D, Vanier, G, Gottschalk, M. Proinflammatory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suis serotype 2. FEMS Immunol Med Mic 2003; 35:49–58.

    Article  CAS  Google Scholar 

  • Verma, S, Nakaoke, R, Dohgu, S, Banks, WA. Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav Immun 2006; 20:449–455.

    Article  PubMed  CAS  Google Scholar 

  • Vilcek, J. The cytokines: an overview. 2003; The Cytokine Handbook, 4th Edition Editor MT Thompson, Elsevier, Amsterdam.

    Google Scholar 

  • Waguespack, PJ, Banks, WA, Kastin, AJ. Interleukin-2 does not cross the blood-brain barrier by a saturable transport system. Brain Res Bull 1994; 34:103–109.

    Article  PubMed  CAS  Google Scholar 

  • Wallenius, V, Wallenius, K, Ahren, B, Rudling, M, Carlsten, H, Dickson, SL, Ohlsson, C, Jansson, JO. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 2002; 8:75–79.

    Article  PubMed  CAS  Google Scholar 

  • Walz, W. Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 2000; 36:291–300.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, S, Pan, W, Kastin, AJ. Strategies to create a regenerating environment for the injured spinal cord. Curr Pharm Design 2005; 11:1267–1277.

    Article  CAS  Google Scholar 

  • Yanagisawa, M, Kurihara, H, Kimura, S, Tomobe, Y, Kobayashi, M, Mitsui, Y, Yazaki, Y, Goto, K, Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332:411–415.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y, Cui, JG, Lukiw, WJ. Natural secretory products of human neural and microvessel endothelial cells: implications in pathogenic “spreading” and Alzheimer’s disease. Mol Neurobiol 2006; 34:181–192.

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic, BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 2005; 28:202–208.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Banks, W.A., Lynch, J.L., Price, T.O. (2009). Cytokines and the Blood–Brain Barrier. In: Siegel, A., Zalcman, S.S. (eds) The Neuroimmunological Basis of Behavior and Mental Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84851-8_1

Download citation

Publish with us

Policies and ethics