Skip to main content

CD4 + and CD8 + T-Cell Immune Responses in West Nile Virus Infection

  • Chapter
West Nile Encephalitis Virus Infection

Abstract

CD4+ and CD8+ T cells, in combination with the innate and humoral immune responses, are critical for recovery of mice from infection with West Nile virus. Mouse models of West Nile virus encephalitis are therefore excellently suited to investigate the role of T cells in the balance between viral clearance and CNS disease following infection with a cytopathic and neurotropic virus. Here we review the in vitro properties of West Nile virus-immune T cell responses, their in vivo disease ameliorating and potentiating effects, and the contribution of the different T cell effector functions to disease outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aihara H, Takasaki T, Matsutani T, Suzuki R, Kurane I (1998) Establishment and characterization of Japanese encephalitis virus-specific, human CD4(+) T-cell clones: flavivirus cross-reactivity, protein recognition, and cytotoxic activity. J Virol 72:8032–8036

    PubMed  CAS  Google Scholar 

  • Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, Zinkernagel RM (1993) The influence of antigen organization on B cell responsiveness. Science 262:1448–1451

    Article  PubMed  CAS  Google Scholar 

  • Beasley DW, Li L, Suderman MT, Barrett AD (2002) Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296:17–23

    Article  PubMed  CAS  Google Scholar 

  • Bevan MJ (2004) Helping the CD8(+) T-cell response. Nat Rev Immunol 4:595–602

    Article  PubMed  CAS  Google Scholar 

  • Binder GK, Griffin DE (2001) Interferon-gamma-mediated site-specific clearance of alphavi-rus from CNS neurons. Science 293:303–306

    Article  PubMed  CAS  Google Scholar 

  • Bishop GA, Hostager BS (2001) B lymphocyte activation by contact-mediated interactions with T lymphocytes. Curr Opin Immunol 13:278–285

    Article  PubMed  CAS  Google Scholar 

  • Blanden RV (1974) T-cell response to viral and bacterial infections. Transplant Rev 19:56–88

    PubMed  CAS  Google Scholar 

  • Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795

    Article  PubMed  CAS  Google Scholar 

  • Brien JD, Uhrlaub JL, Nikolich-Zugich J (2007) Protective capacity and epitope specificity of CD8(+) T cells responding to lethal West Nile virus infection. Eur J Immunol 37:1855–1863

    Article  PubMed  CAS  Google Scholar 

  • Camenga DL, Nathanson N, Cole GA (1974) Cyclophosphamide-potentiated West Nile viral encephalitis: relative influence of cellular and humoral factors. J Infect Dis 130:634–641

    PubMed  CAS  Google Scholar 

  • Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345

    Article  PubMed  CAS  Google Scholar 

  • Castellino F, Germain RN (2006) Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 24:519–540

    Article  PubMed  CAS  Google Scholar 

  • Cheeran MC, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR (2005) Differential responses of human brain cells to West Nile virus infection. J Neurovirol 11:512–524

    Article  PubMed  CAS  Google Scholar 

  • Diamond MS, Shrestha B, Marri A, Mahan D, Engle M (2003a) B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77:2578–2586

    Article  CAS  Google Scholar 

  • Diamond MS, Shrestha B, Mehlhop E, Sitati E, Engle M (2003b) Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol 16:259–278

    Article  CAS  Google Scholar 

  • Diamond MS, Sitati EM, Friend LD, Higgs S, Shrestha B, Engle M (2003c) A critical role for induced IgM in the protection against West Nile virus infection. J Exp Med 198:1853–1862

    Article  CAS  Google Scholar 

  • Diniz JA, Da Rosa AP, Guzman H, Xu F, Xiao SY, Popov VL, Vasconcelos, PF, Tesh RB (2006) West Nile virus infection of primary mouse neuronal and neuroglial cells: the role of astrocytes in chronic infection. Am J Trop Med Hyg 75:691–696

    PubMed  Google Scholar 

  • Doherty PC, Zinkernagel RM (1974) T-cell-mediated immunopathology in viral infections. Transplant Rev 19:89–120

    PubMed  CAS  Google Scholar 

  • Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD (2002) IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168:3195–3204

    PubMed  CAS  Google Scholar 

  • Eldadah AH, Nathanson N (1967) Pathogenesis of West Nile Virus encephalitis in mice and rats. II. Virus multiplication, evolution of immunofluorescence, and development of histological lesions in the brain. Am J Epidemiol 86:776–790

    PubMed  CAS  Google Scholar 

  • Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26:485–495

    Article  PubMed  CAS  Google Scholar 

  • Fenner F (1949) Mouse-pox (infectious ectromelia of mice): a review. J Immunol 63:341–373

    PubMed  CAS  Google Scholar 

  • Fenner F (1982) Mousepox. In: Foster HL, Small JD, Fox JG (eds) The mouse in biomedical research, vol 2. Academic Press, New York, pp 209–230

    Google Scholar 

  • Fulginiti VA, Kempe CH, Hathaway WE, Pearlman DS, Sieber OF, Eller JJ, Joyner JJ, Robinson A (1968) Progressive vaccinia in immunologically defiecient individuals. In: Bergsma D (ed) Immunologic deficiency diseases in man, vol 4. The National Foundation-March of Dimes, New York, pp. 129–144

    Google Scholar 

  • Gajdosova E, Mayer V, Oravec C (1980) Cross-reactive killer T lymphocytes in a flavivirus infection. Acta Virol 24:291–293

    PubMed  CAS  Google Scholar 

  • Gajdosova E, Oravec C, Mayer V (1981) Cell-mediated immunity in flavivirus infections. I. Induction of cytotoxic T lymphocytes in mice by an attenuated virus from the tick-borne encephalitis complex and its group-reactive character. Acta Virol 25:10–18

    PubMed  CAS  Google Scholar 

  • Garcia-Tapia D, Hassett DE, MitchellJr WJ, Johnson GC, Kleiboeker SB (2007) West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol 13:130–138

    Article  PubMed  CAS  Google Scholar 

  • Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202:1087–1098

    Article  PubMed  CAS  Google Scholar 

  • Goverdhan MK, Kulkarni AB, Gupta AK, Tupe CD, Rodrigues JJ (1992) Two-way cross-protection between West Nile and Japanese encephalitis viruses in bonnet macaques. Acta Virol 36:277–283

    PubMed  CAS  Google Scholar 

  • Griffin DE (2003) Immune responses to RNA-virus infections of the CNS. Nat Rev Immunol 3:493–502

    Article  PubMed  CAS  Google Scholar 

  • Halevy M, Akov Y, Ben-Nathan D, Kobiler D, Lachmi B, Lustig S (1994) Loss of active neuroinvasiveness in attenuated strains of West Nile virus: pathogenicity in immunocom-petent and SCID mice. Arch Virol 137:355–370

    Article  PubMed  CAS  Google Scholar 

  • Hangartner L, Zinkernagel RM, Hengartner H (2006) Antiviral antibody responses: the two extremes of a wide spectrum. Nat Rev Immunol 6:231–243

    Article  PubMed  CAS  Google Scholar 

  • Heller KN, Gurer C, Munz C (2006) Virus-specific CD4+ T cells: ready for direct attack. J Exp Med 203:805–808

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  PubMed  CAS  Google Scholar 

  • Hill AB, Müllbacher A, Parrish C, Coia G, Westaway EG, Blanden RV (1992) Broad cross-reactivity with marked fine specificity in the cytotoxic T cell response to flaviviruses. J Gen Virol 73:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Hill AB, Lobigs M, Blanden RV, Kulkarni A, Müllbacher A (1993) The cellular immune response to flaviviruses. In: Thomas DB (ed) Viruses and the cellular immune response. Marcel Dekker Inc., New York, pp 363–428

    Google Scholar 

  • Hsieh MF, Lai SL, Chen JP, Sung JM, Lin YL, Wu-Hsieh BA, Gerard C, Luster A, Liao F (2006) Both CXCR3 and CXCL10/IFN-inducible protein 10 are required for resistance to primary infection by dengue virus. J Immunol 177:1855–1863

    PubMed  CAS  Google Scholar 

  • Kelley TW, Prayson RA, Ruiz AI, Isada CM, Gordon SM (2003) The neuropathology of West Nile virus meningoencephalitis. A report of two cases and review of the literature. Am J Clin Pathol 119:749–753

    Article  PubMed  Google Scholar 

  • Kesson AM, Blanden RV, Müllbacher A (1987) The primary in vivo murine cytotoxic T cell response to the flavivirus, West Nile. J Gen Virol 68:2001–2006

    Article  PubMed  Google Scholar 

  • Kesson AM, Blanden RV, Müllbacher A (1988) The secondary in vitro murine cytotoxic T cell response to the flavivirus, West Nile. Immunol Cell Biol 66:23–32

    Article  PubMed  Google Scholar 

  • King NJ, Kesson AM (2003) Interaction of flaviviruses with cells of the vertebrate host and decoy of the immune response. Immunol Cell Biol 81:207–216

    Article  PubMed  Google Scholar 

  • King NJ, Shrestha B, Kesson AM (2003) Immune modulation by flaviviruses. Adv Virus Res 60:121–155

    Article  PubMed  CAS  Google Scholar 

  • Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS (2005) Neuronal CXCL10 directs CD8 + T-cell recruitment and control of West Nile virus encephalitis. J Virol 79:11457–11466

    Article  PubMed  CAS  Google Scholar 

  • Krensky AM, Clayberger C (2005) Granulysin: a novel host defense molecule. Am J Transplant 5:1789–1792

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni AB, Müllbacher A, Blanden RV (1991a) Effect of high ligand concentration on West Nile virus-specific T cell proliferation. Immunol Cell Biol 69:27–38

    Article  Google Scholar 

  • Kulkarni AB, Müllbacher A, Blanden RV (1991b). Functional analysis of macrophages, B cells and splenic dendritic cells as antigen-presenting cells in West Nile virus-specific murine T lymphocyte proliferation. Immunol Cell Biol 69:71–80

    Article  Google Scholar 

  • Kulkarni AB, Müllbacher A, Blanden RV (1991c) In vitro T-cell proliferative response to the flavivirus, West Nile. Viral Immunol 4:73–82

    Article  CAS  Google Scholar 

  • Kulkarni AB, Müllbacher A, Parrish CR, Westaway EG, Coia G, Blanden RV (1992) Analysis of murine major histocompatibility complex class II-restricted T-cell responses to the flavivirus Kunjin by using vaccinia virus expression. J Virol 66:3583–3592

    PubMed  CAS  Google Scholar 

  • Kumar P, Sulochana P, Nirmala G, Haridattatreya M, Satchidanandam V (2004) Conserved amino acids 193–324 of non-structural protein 3 are a dominant source of peptide determinants for CD4 + and CD8 + T cells in a healthy Japanese encephalitis virus-endemic cohort. J Gen Virol 85:1131–1143

    Article  PubMed  CAS  Google Scholar 

  • Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB (1998) Phylogeny of the genus flavivirus. J Virol 72:73–83

    PubMed  CAS  Google Scholar 

  • Kutubuddin M, Kolaskar AS, Galande S, Gore MM, Ghosh SN, Banerjee K (1991) Recognition of helper T cell epitopes in envelope (E) glycoprotein of Japanese encephalitis, West Nile and dengue viruses. Mol Immunol 28:149–154

    Article  PubMed  CAS  Google Scholar 

  • Lad VJ, Gupta AK, Goverdhan MK, Ayachit VL, Rodrigues JJ, Hungund LV (1993) Susceptibility of BL6 nude (congenitally athymic) mice to Japanese encephalitis virus by the peripheral route. Acta Virol 37:232–240

    PubMed  CAS  Google Scholar 

  • Lehmann-Grube F (1982) Lymphocytic choriomeningitis virus. In: Foster HL, Small JD, Fox JG (eds) The mouse in biomedical research, vol 2. Academic Press, New York, pp 231–266

    Google Scholar 

  • Lepej SZ, Misic-Majerus L, Jeren T, Rode OD, Remenar A, Sporec V, Vince A (2007) Chemokines CXCL10 and CXCL11 in the cerebrospinal fluid of patients with tick-borne encephalitis. Acta Neurol Scand 115:109–114

    Article  PubMed  CAS  Google Scholar 

  • Licon Luna RM, Lee E, Müllbacher A, Blanden RV, Langman R, Lobigs M (2002) Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J Virol 76:3202–3211

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, King N, Kesson A, Blanden RV, Müllbacher A (1988) West Nile virus infection modulates the expression of class I and class II MHC antigens on astrocytes in vitro. Ann NY Acad Sci 540:483–485

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Blanden RV, Müllbacher A (1989) Identification of cytolytic lymphocytes in West Nile virus-infected murine central nervous system. J Gen Virol 70:565–573

    Article  PubMed  Google Scholar 

  • Lobigs M, Arthur CE, Müllbacher A, Blanden RV (1994) The flavivirus nonstructural protein, NS3, is a dominant source of cytotoxic T cell peptide determinants. Virology 202:195–201

    Article  PubMed  CAS  Google Scholar 

  • Lobigs M, Blanden RV, Müllbacher A (1996) Flavivirus-induced up-regulation of MHC class I antigens; implications for the induction of CD8 + T-cell-mediated autoimmunity. Immunol Rev 152:5–19

    Article  PubMed  CAS  Google Scholar 

  • Lobigs M, Müllbacher A, Pavy M (1997) The CD8+ cytotoxic T cell response to flavivirus infection. Arbovirus Res Aust 7:160–165

    Google Scholar 

  • Lobigs M, Müllbacher A, Regner M (2003a) MHC class I up-regulation by flaviviruses: Immune interaction with unknown advantage to host or pathogen. Immunol Cell Biol 81:217–223

    Article  CAS  Google Scholar 

  • Lobigs M, Müllbacher A, Wang Y, Pavy M, Lee E (2003b) Role of type I and type II interferon responses in recovery from infection with an encephalitic flavivirus. J Gen Virol 84:567–572

    Article  CAS  Google Scholar 

  • Mathews JH, Allan JE, Roehrig JT, Brubaker JR, Uren MF, Hunt AR (1991) T-helper cell and associated antibody response to synthetic peptides of the E glycoprotein of Murray Valley encephalitis virus. J Virol 65:5141–5148

    PubMed  CAS  Google Scholar 

  • Mills DM, Cambier JC (2003) B lymphocyte activation during cognate interactions with CD4+ T lymphocytes: molecular dynamics and immunologic consequences. Semin Immunol 15:325–329

    Article  PubMed  CAS  Google Scholar 

  • Momburg F, Müllbacher A, Lobigs M (2001) Modulation of transporter associated with antigen processing (TAP)- mediated peptide import into the endoplasmic reticulum by flavivi-rus infection. J Virol 75:5663–5671

    Article  PubMed  CAS  Google Scholar 

  • Monath TP (2002) Editorial: Jennerian vaccination against West Nile virus. Am J Trop Med Hyg 66:113–114

    PubMed  Google Scholar 

  • Müllbacher A, Lobigs M (1995) Up-regulation of MHC class I by flavivirus-induced peptide translocation into the endoplasmic reticulum. Immunity 3:207–214

    Article  PubMed  Google Scholar 

  • Müllbacher A, Lobigs M, Lee E (2003) Immunobiology of mosquito-borne encephalitic flavi-viruses. Adv Virus Res 60:87–120

    Article  PubMed  Google Scholar 

  • Müllbacher A, Regner M, Wang Y, Lee E, Lobigs M, Simon M (2004) Can we really learn from model pathogens? Trends Immunol 25:524–528

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Cavalie A, Jenne DE, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269:549–552

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Medana IM, Bauer J, Lassmann H (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 25:313–319

    Article  PubMed  CAS  Google Scholar 

  • Nybakken GE, Nelson CA, Chen BR, Diamond MS, Fremont DH (2006) Crystal structure of the West Nile virus envelope glycoprotein. J Virol 80:11467–11474

    Article  PubMed  CAS  Google Scholar 

  • Omalu BI, Shakir AA, Wang G, Lipkin WI, Wiley CA (2003) Fatal fulminant pan-meningo-polioencephalitis due to West Nile virus. Brain Pathol 13:465–472

    Article  PubMed  Google Scholar 

  • Parquet MC, Kumatori A, Hasebe F, Morita K, Igarashi A (2001) West Nile virus-induced bax-dependent apoptosis. FEBS Lett 500:17–24

    Article  PubMed  CAS  Google Scholar 

  • Parrish CR, Coia G, Hill A, Müllbacher A, Westaway EG, Blanden RV (1991) Preliminary analysis of murine cytotoxic T cell responses to the proteins of the flavivirus Kunjin using vaccinia virus expression. J Gen Virol 72:1645–1653

    Article  PubMed  CAS  Google Scholar 

  • Purtha WE, Myers N, Mitaksov V, Sitati E, Connolly J, Fremont DH, Hansen TH, Diamond MS (2007) Antigen-specific cytotoxic T lymphocytes protect against lethal West Nile virus encephalitis. Eur J Immunol 37:1845–1854

    Article  PubMed  CAS  Google Scholar 

  • Ramshaw IA, Ramsay AJ, Karupiah G, Rolph MS, Mahalingam S, Ruby JC (1997) Cytokines and immunity to viral infections. Immunol Rev 159:119–135

    Article  PubMed  CAS  Google Scholar 

  • Regner M, Lobigs M, Blanden RV, Milburn P, Müllbacher A (2001a). Antiviral cytotoxic T cells cross-reactively recognize disparate peptide determinants from related viruses but ignore more similar self- and foreign determinants. J Immunol 166:3820–3828

    CAS  Google Scholar 

  • Regner M, Lobigs M, Blanden RV, Müllbacher A (2001b) Effector cytolotic function but not IFN-gamma production in cytotoxic T cells triggered by virus-infected target cells in vitro. Scand J Immunol 54:366–374

    Article  CAS  Google Scholar 

  • Regner M, Müllbacher A, Blanden RV, Lobigs M (2001c) Immunogenicity of two peptide determinants in the cytolytic T cell response to flavivirus infection: inverse correlation between peptide affinity for MHC class I and T cell precursor frequency. Viral Immunol 14:135–149

    Article  CAS  Google Scholar 

  • Rothman AL (2003) Immunology and immunopathogenesis of dengue disease. Adv Virus Res 60:397–419

    Article  PubMed  CAS  Google Scholar 

  • Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and corecep-tors. Annu Rev Immunol 24:419–466

    Article  PubMed  CAS  Google Scholar 

  • Sampson BA, Ambrosi C, Charlot A, Reiber K, Veress JF, Armbrustmacher V (2000) The pathology of human West Nile virus infection. Hum Pathol 31:527–531

    Article  PubMed  CAS  Google Scholar 

  • Samuel MA, Morrey JD, Diamond MS (2007) Caspase 3-dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J Virol 81:2614–2623

    Article  PubMed  CAS  Google Scholar 

  • Scherret JH, Poidinger M, Mackenzie JS, Broom AK, Deubel V, Lipkin WI, Briese T, Gould EA, Hall RA (2001) The relationships between West Nile and Kunjin viruses. Emerg Infect Dis 7:697–705

    Article  PubMed  CAS  Google Scholar 

  • Sejvar JJ, Marfin AA (2006) Manifestations of West Nile neuroinvasive disease. Rev Med Virol 16:209–224

    Article  PubMed  Google Scholar 

  • Shrestha B, Diamond MS (2004) Role of CD8+ T cells in control of West Nile virus infection. J Virol 78:8312–8321

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Diamond MS (2007) Fas Ligand interactions contribute to CD8 + T cell-mediated control of West Nile virus infection in the central nervous system. J Virol 81:11749–11757

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Gottlieb D, Diamond MS (2003) Infection and injury of neurons by West Nile encephalitis virus. J Virol 77:13203–13213

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Samuel MA, Diamond MS (2006a) CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol 80:119–129

    Article  CAS  Google Scholar 

  • Shrestha B, Wang T, Samuel MA, Whitby K, Craft J, Fikrig E, Diamond MS (2006b) Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol 80:5338–5348

    Article  CAS  Google Scholar 

  • Sitati EM, Diamond MS (2006) CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol 80:12060–12069

    Article  PubMed  CAS  Google Scholar 

  • Sitati E, McCandless EE, Klein RS, Diamond MS (2007) CD40-CD40 ligand interactions promote trafficking of CD8 + T cells into the brain and protection against West Nile virus encephalitis. J Virol 81:9801–9811

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, McGuire MJ, Thia KY (1995) Expression of recombinant human granzyme B. A processing and activation role for dipeptidyl peptidase I. J Immunol 154:6299–6305

    PubMed  CAS  Google Scholar 

  • Tesh RB, Travassos da Rosa AP, Guzman H, Araujo TP, Xiao SY (2002) Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerg Infect Dis 8:245–251

    Article  PubMed  Google Scholar 

  • Tracey KJ, Cerami A (1994) Tumor necrosis factor: a pleiotropic cytokine and herapeutic target. Annu Rev Med 45:491–503

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747

    Article  PubMed  CAS  Google Scholar 

  • Uren MF, Doherty PC, Allan JE (1987) Flavivirus-specific murine L3T4 + T cell clones: induction, characterization and cross-reactivity. J Gen Virol 68:2655–2663

    Article  PubMed  Google Scholar 

  • van der Most RG, Harrington LE, Giuggio V, Mahar PL, Ahmed R (2002) Yellow fever virus 17D envelope and NS3 proteins are major targets of the antiviral T cell response in mice. Virology 296:117–124

    Article  PubMed  CAS  Google Scholar 

  • Vieira P, Rajewsky K (1988) The half-lives of serum immunoglobulins in adult mice. Eur J Immunol 18:313–316

    Article  PubMed  CAS  Google Scholar 

  • Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Scully E, Yin Z, Kim JH, Wang S, Yan J, Mamula M, Anderson JF, Craft J, Fikrig E (2003a) IFN-gamma-producing gammadeltaT cells help control murine West Nile virus infection. J Immunol 171:2524–2531

    CAS  Google Scholar 

  • Wang Y, Lobigs M, Lee E, Müllbacher A (2003b) CD8+ T cells mediate recovery and immu- nopathology in West Nile virus encephalitis. J Virol 77:13323–13334

    Article  CAS  Google Scholar 

  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004a) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    Article  CAS  Google Scholar 

  • Wang Y, Lobigs M, Lee E, Müllbacher A (2004b) Exocytosis and Fas mediated cytolytic mechanisms exert protection from West Nile virus induced encephalitis in mice. Immunol Cell Biol 82:170–173

    Article  CAS  Google Scholar 

  • Wang Y, Lobigs M, Lee E, Koskinen A, Müllbacher A (2006) CD8(+) T cell-mediated immune responses in West Nile virus (Sarafend strain) encephalitis are independent of gamma interferon. J Gen Virol 87:3599–3609

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H (2002) Immune protection of the brain–efficient and delicate. J Infect Dis 186 Suppl 2:S140–144

    Article  Google Scholar 

  • Yang JS, Ramanathan MP, Muthumani K, Choo AY, Jin SH, Yu QC, Hwang DS, Choo DK, Lee MD, Dang K, Tang W, Kim JJ, Weiner DB (2002) Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg Infect Dis 8:1379–1384

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lobigs, M., Müllbacher, A., Regner, M. (2009). CD4 + and CD8 + T-Cell Immune Responses in West Nile Virus Infection. In: West Nile Encephalitis Virus Infection. Emerging Infectious Diseases of the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79840-0_13

Download citation

Publish with us

Policies and ethics