Skip to main content

Neurotransmitter Receptors in Astrocytes

  • Chapter
  • First Online:
Astrocytes in (Patho)Physiology of the Nervous System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

IJ-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ARs:

Adrenergic receptors

ATP:

Adenosine 5′-triphosphate

cAMP:

Cyclic adenosine monophosphate

ChR:

Acetylcholine receptor

CNS:

Central nervous system

D-AP-5:

d-2-amino-phosphonopentanoic acid

ER:

Endoplasmic reticulum

GABA:

γ-aminobutyric acid

GluR:

Glutamate receptor

IP3 :

1,4,5-inositol-trisphosphate

KA:

Kainate

mChR:

Muscarinic ChR

mGluR:

Metabotropic glutamate receptors

nChR:

Nicotinic ChR

NMDA:

N-methyl-d-aspartate

PLC:

Phospholipase C

References

  • Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475.

    PubMed  CAS  Google Scholar 

  • Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+. elevations in astrocytes in hippocampal slices J Neurosci 22:2443–2450.

    PubMed  CAS  Google Scholar 

  • Aronica E, van Vliet EA, Mayboroda OA, Troost D, da Silva FH, Gorter JA (2000) Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 12:2333–2344.

    PubMed  CAS  Google Scholar 

  • Ashur-Fabian O, Giladi E, Brenneman DE, Gozes I (1997) Identification of VIP/PACAP receptors on rat astrocytes using antisense oligodeoxynucleotides. J Mol Neurosci 9:211–222.

    PubMed  CAS  Google Scholar 

  • Backus KH, Kettenmann H, Schachner M (1988) Effect of benzodiazepines and pentobarbital on the GABA-induced depolarization in cultured astrocytes. Glia 1:132–140.

    PubMed  CAS  Google Scholar 

  • Ballerini P, Rathbone MP, Di Iorio P, Renzetti A, Giuliani P, D’Alimonte I, Trubiani O, Caciagli F, Ciccarelli R (1996) Rat astroglial P2Z (P2X7. ) receptors regulate intracellular calcium and purine release Neuroreport 7:2533–2537.

    PubMed  CAS  Google Scholar 

  • Barrera NP, Ormond SJ, Henderson RM, Murrell-Lagnado RD, Edwardson JM (2005) Atomic force microscopy imaging demonstrates that P2X2. receptors are trimers but that P2X6 receptor subunits do not oligomerize J Biol Chem 280:10759–10765.

    PubMed  CAS  Google Scholar 

  • Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969.

    PubMed  CAS  Google Scholar 

  • Bormann J, Kettenmann H (1988) Patch-clamp study of γ-aminobutyric acid receptor Cl−. channels in cultured astrocytes Proc Natl Acad Sci U S A 85:9336–9340.

    PubMed  CAS  Google Scholar 

  • Bowman CL, Kimelberg HK (1984) Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311:656–659.

    PubMed  CAS  Google Scholar 

  • Brand-Schieber E, Lowery SL, Werner P (2004) Select ionotropic glutamate AMPA/kainate receptors are expressed at the astrocyte–vessel interface. Brain Res 1007:178–182.

    PubMed  CAS  Google Scholar 

  • Burnashev N (1998) Calcium permeability of ligand-gated channels. Cell Calcium 24:325–332.

    PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L, eds), pp Cell membrane receptors for drugs and hormones: A multidisciplinary approach. (Raven. New York: 107–118.

    Google Scholar 

  • Carson MJ, Thomas EA, Danielson PE, Sutcliffe JG (1996) The 5HT5A serotonin receptor is expressed predominantly by astrocytes in which it inhibits cAMP accumulation: a mechanism for neuronal suppression of reactive astrocytes. Glia 17:317–326.

    PubMed  CAS  Google Scholar 

  • Catlin MC, Kavanagh TJ, Costa LG (2000) Muscarinic receptor-induced calcium responses in astroglia. Cytometry 41:123–132.

    PubMed  CAS  Google Scholar 

  • Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Seguela P (2002) ADP and AMP induce interleukin-1β release from microglial cells through activation of ATP-primed P2X7. receptor channels J Neurosci 22:3061–3069.

    PubMed  Google Scholar 

  • Charles KJ, Deuchars J, Davies CH, Pangalos MN (2003) GABA B receptor subunit expression in glia. Mol Cell Neurosci 24:214–223.

    PubMed  CAS  Google Scholar 

  • Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7. receptor Neuropharmacology 36:1277–1283.

    PubMed  CAS  Google Scholar 

  • Condorelli DF, Conti F, Gallo V, Kirchhoff F, Seifert G, Steinhauser C, Verkhratsky A, Yuan X (1999) Expression and functional analysis of glutamate receptors in glial cells. Adv Exp Med Biol 468:49–67.

    PubMed  CAS  Google Scholar 

  • Conti F, DeBiasi S, Minelli A, Melone M (1996) Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. Glia 17:254–258.

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844.

    PubMed  CAS  Google Scholar 

  • Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870–1877.

    PubMed  CAS  Google Scholar 

  • Dermietzel R (1998) Gap junction wiring: a ‘new’ principle in cell-to-cell communication in the nervous system? Brain Res Brain Res Rev 26:176–183.

    Google Scholar 

  • Dermietzel R, Spray DC (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 16:186–192.

    PubMed  CAS  Google Scholar 

  • Dixon SJ, Yu R, Panupinthu N, Wilson JX (2004) Activation of P2 nucleotide receptors stimulates acid efflux from astrocytes. Glia 47:367–376.

    PubMed  Google Scholar 

  • Duan S, Anderson CM, Keung EC, Chen Y, Swanson RA (2003) P2X7. receptor-mediated release of excitatory amino acids from astrocytes J Neurosci 23:1320–1328.

    PubMed  CAS  Google Scholar 

  • Egan TM, Samways DS, Li Z (2006) Biophysics of P2X receptors. Pflugers Arch 452:501–512.

    PubMed  CAS  Google Scholar 

  • Enkvist MO, Holopainen I, Akerman KE (1989) Glutamate receptor-linked changes in membrane potential and intracellular Ca2+. in primary rat astrocytes Glia 2:397–402.

    PubMed  CAS  Google Scholar 

  • Eriksson PS, Nilsson M, Wagberg M, Hansson E, Ronnback L (1993) κ-opioid receptors on astrocytes stimulate L-type Ca2+. channels Neuroscience 54:401–407.

    PubMed  CAS  Google Scholar 

  • Fernandez-Agullo T (2001) Thyrotropin-releasing hormone and its receptor in glia. Glia 33:267–276.

    PubMed  CAS  Google Scholar 

  • Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504.

    PubMed  CAS  Google Scholar 

  • Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633.

    PubMed  CAS  Google Scholar 

  • Fiske CH, SubbaRow Y (1929) Phosphorous compounds of muscle and liver. Science 70:381–382.

    PubMed  CAS  Google Scholar 

  • Franke H, Grosche J, Schadlich H, Krugel U, Allgaier C, Illes P (2001) P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 108:421–429.

    PubMed  CAS  Google Scholar 

  • Fraser DD, Mudrick-Donnon LA, MacVicar BA (1994) Astrocytic GABA receptors. Glia 11:83–93.

    PubMed  CAS  Google Scholar 

  • Fukui H, Inagaki N, Ito S, Kubo A, Kondoh H, Yamatodani A, Wada H (1991) Histamine H1. -receptors on astrocytes in primary cultures: a possible target for histaminergic neurones Agents Actions Suppl 33:161–180.

    PubMed  CAS  Google Scholar 

  • Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia 43:218–203.

    PubMed  Google Scholar 

  • Gallo V, Ghiani CA (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci 21:252–258.

    PubMed  CAS  Google Scholar 

  • Garcia-Barcina JM, Matute C (1996) Expression of kainate-selective glutamate receptor subunits in glial cells of the adult bovine white matter. Eur J Neurosci 8:2379–2387.

    PubMed  CAS  Google Scholar 

  • Gebke E, Muller AR, Jurzak M, Gerstberger R (1998) Angiotensin II-induced calcium signalling in neurons and astrocytes of rat circumventricular organs. Neuroscience 85:509–520.

    PubMed  CAS  Google Scholar 

  • Gimpl G, Walz W, Ohlemeyer C, Kettenmann H (1992) Bradykinin receptors in cultured astrocytes from neonatal rat brain are linked to physiological responses. Neurosci Lett 144:139–142.

    PubMed  CAS  Google Scholar 

  • Glaum SR, Holzwarth JA, Miller RJ (1990) Glutamate receptors activate Ca2+. mobilization and Ca2+ influx into astrocytes Proc Natl Acad Sci U S A 87:3454–3458.

    PubMed  CAS  Google Scholar 

  • Golgi C (1903) Opera Omnia. Hoepli Editore. Milano

    Google Scholar 

  • Griffith R, Sutin J (1996) Reactive astrocyte formation in vivo is regulated by noradrenergic axons. J Comp Neurol 371:362–375.

    PubMed  CAS  Google Scholar 

  • Grimaldi M, Cavallaro S (1999) Functional and molecular diversity of PACAP/VIP receptors in cortical neurons and type I astrocytes. Eur J Neurosci 11:2767–2772.

    PubMed  CAS  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528.

    PubMed  CAS  Google Scholar 

  • Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75:257–261.

    PubMed  CAS  Google Scholar 

  • Hatton GI (2004) Morphological plasticity of astroglial/neuronal interactions: functional implications In: Hatton GI, Parpura V, eds), pp Glial óneuronal signaling (Kluwer. Boston, MA: 365–395.

    Google Scholar 

  • Hauser KF, Stiene-Martin A, Mattson MP, Elde RP, Ryan SE, Godleske CC (1996) γ-opioid receptor-induced Ca2+. mobilization and astroglial development: morphine inhibits DNA synthesis and stimulates cellular hypertrophy through a Ca2+-dependent mechanism Brain Res 720:191–203.

    PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108.

    PubMed  CAS  Google Scholar 

  • Illes P, Ribeiro JA (2004) Neuronal P2 receptors of the central nervous system. Curr Top Med Chem 4:831–838.

    PubMed  CAS  Google Scholar 

  • Inagaki N, Fukui H, Taguchi Y, Wang NP, Yamatodani A, Wada H (1989) Characterization of histamine H1. -receptors on astrocytes in primary culture: [3H]mepyramine binding studies Eur J Pharmacol 173:43–51.

    PubMed  CAS  Google Scholar 

  • Jabs R, Kirchhoff F, Kettenmann H, Steinhauser C (1994) Kainate activates Ca2+. -permeable glutamate receptors and blocks voltage-gated K+ currents in glial cells of mouse hippocampal slices Pflugers Arch 426:310–319.

    PubMed  CAS  Google Scholar 

  • Jacques-Silva MC, Rodnight R, Lenz G, Liao Z, Kong Q, Tran M, Kang Y, Gonzalez FA, Weisman GA, Neary JT (2004) P2X7. receptors stimulate AKT phosphorylation in astrocytes Br J Pharmacol 141:1106–1117.

    PubMed  CAS  Google Scholar 

  • Jones IW, Wonnacott S (2004) Precise localization of IJ7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J Neurosci 24:11244–11252.

    PubMed  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692.

    PubMed  CAS  Google Scholar 

  • Karadottir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166.

    PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1967a) Ionic requirements of synaptic transmitter release. Nature 215:651.

    CAS  Google Scholar 

  • Katz B, Miledi R (1967b) The timing of calcium action during neuromuscular transmission. J Physiol 189:535–544.

    CAS  Google Scholar 

  • Katz B, Miledi R (1970) Further study of the role of calcium in synaptic transmission. J Physiol 207:789–801.

    PubMed  CAS  Google Scholar 

  • Kettenmann H (1990) Chloride channels and carriers in cultured glial cells. In: Alvarez-Leefmans FJ, Russel JM, Chloride channels and carriers in nerve, muscle, and glial cells (Plenum. New York: 193–208.

    Google Scholar 

  • Kettenmann H, Ransom BR (2005) Neuroglia. Oxford University Press. Oxford, UK

    Google Scholar 

  • Kettenmann H, Backus KH, Schachner M (1984a) Aspartate, glutamate and γ-aminobutyric acid depolarize cultured astrocytes. Neurosci Lett 52:25–29.

    CAS  Google Scholar 

  • Kettenmann H, Gilbert P, Schachner M (1984b) Depolarization of cultured oligodendrocytes by glutamate and GABA. Neurosci Lett 47:271–276.

    CAS  Google Scholar 

  • Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2. -receptor action in prefrontal cortex Proc Natl Acad Sci U S A 98:1964–1969.

    PubMed  CAS  Google Scholar 

  • Kimelberg HK (1990) Chloride transport across glial membranes. In: Chloride channels and carriers in nerve, muscle, and glial cells (Alvarez-Leefmans FJ, Russel JM, eds), pp 159–191. NY: Plenum.

    Google Scholar 

  • Kirchhoff F, Mulhardt C, Pastor A, Becker CM, Kettenmann H (1996) Expression of glycine receptor subunits in glial cells of the rat spinal cord. J Neurochem 66:1383–1390.

    PubMed  CAS  Google Scholar 

  • Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A (1995a) Activation of P2. -purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes J Physiol Lond 483:41–57.

    CAS  Google Scholar 

  • Kirischuk S, Moller T, Voitenko N, Kettenmann H, Verkhratsky A (1995b) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15:7861–7871.

    CAS  Google Scholar 

  • Kirischuk S, Tuschick S, Verkhratsky A, Kettenmann H (1996) Calcium signalling in mouse Bergmann glial cells mediated by IJ1. -adrenoreceptors and H1 histamine receptors Eur J Neurosci 8:1198–1208.

    PubMed  CAS  Google Scholar 

  • Kirischuk S, Kirchhoff F, Matyash V, Kettenmann H, Verkhratsky A (1999) Glutamate-triggered calcium signalling in mouse Bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release. Neuroscience 92:1051–1059.

    PubMed  CAS  Google Scholar 

  • Kondoh T, Nishizaki T, Aihara H, Tamaki N (2001) NMDA-responsible, APV-insensitive receptor in cultured human astrocytes. Life Sci 68:1761–1767.

    PubMed  CAS  Google Scholar 

  • Kukley M, Barden JA, Steinhauser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21.

    PubMed  CAS  Google Scholar 

  • Kulik A, Haentzsch A, Luckermann M, Reichelt W, Ballanyi K (1999) Neuron–glia signaling via IJ1. adrenoceptor-mediated Ca2+ release in Bergmann glial cells in situ J Neurosci 19:8401–8408.

    PubMed  CAS  Google Scholar 

  • Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683.

    PubMed  CAS  Google Scholar 

  • Lerea LS, McCarthy KD (1989) Astroglial cells in vitro are heterogeneous with respect to expression of the IJ1. -adrenergic receptor Glia 2:135–147.

    PubMed  CAS  Google Scholar 

  • Lerma J (2003) Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 4:481–495.

    PubMed  CAS  Google Scholar 

  • Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA (2004) Cys-loop receptors: new twists and turns. Trends Neurosci 27:329–336.

    PubMed  CAS  Google Scholar 

  • Lohmann K (1929) Uber die Pyrophosphatfraktion im Muskel. Naturwissenschaften 17:624–625.

    CAS  Google Scholar 

  • Lopez T, Lopez-Colome AM, Ortega A (1997) NMDA receptors in cultured radial glia. FEBS Lett 405:245–248.

    PubMed  CAS  Google Scholar 

  • MacVicar BA, Tse FW, Crichton SA, Kettenmann H (1989) GABA-activated Cl−. channels in astrocytes of hippocampal slices J Neurosci 9:3577–3583.

    PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527.

    PubMed  CAS  Google Scholar 

  • Maxishima M, Shiga T, Shutoh F, Hamada S, Maeshima T, Okado N (2001) Serotonin 2A receptor-like immunoreactivity is detected in astrocytes but not in oligodendrocytes of rat spinal cord. Brain Res 889:270–273.

    PubMed  CAS  Google Scholar 

  • Mayer ML (2005) Glutamate receptor ion channels. Curr Opin Neurobiol 15:282–288.

    PubMed  CAS  Google Scholar 

  • Mayer ML, Armstrong N (2004) Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66:161–181.

    PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+. of NMDA responses in spinal cord neurones Nature 309:261–263.

    PubMed  CAS  Google Scholar 

  • Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988–992.

    PubMed  CAS  Google Scholar 

  • Milner TA, Lee A, Aicher SA, Rosin DL (1998) Hippocampal IJ2a. -adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes J Comp Neurol 395:310–327.

    PubMed  CAS  Google Scholar 

  • Mittaud P, Labourdette G, Zingg H, Guenot-Di Scala D (2002) Neurons modulate oxytocin receptor expression in rat cultured astrocytes: involvement of TGF-β and membrane components. Glia 37:169–177.

    PubMed  Google Scholar 

  • Moller T, Kann O, Verkhratsky A, Kettenmann H (2000) Activation of mouse microglial cells affects P2 receptor signaling. Brain Res 853:49–59.

    PubMed  CAS  Google Scholar 

  • Montiel-Herrera M, Miledi R, Garcia-Colunga J (2006) Membrane currents elicited by angiotensin II in astrocytes from the rat corpus callosum. Glia 53:366–371.

    PubMed  Google Scholar 

  • Muller T, Moller T, Berger T, Schnitzer J, Kettenmann H (1992) Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256:1563–1566.

    PubMed  CAS  Google Scholar 

  • Muller T, Grosche J, Ohlemeyer C, Kettenmann H (1993) NMDA-activated currents in Bergmann glial cells. Neuroreport 4:671–674.

    PubMed  CAS  Google Scholar 

  • Muller T, Fritschy JM, Grosche J, Pratt GD, Mohler H, Kettenmann H (1994) Developmental regulation of voltage-gated K+. channel and GABAA receptor expression in Bergmann glial cells J Neurosci 14:2503–2514.

    PubMed  CAS  Google Scholar 

  • Muscella A, Aloisi F, Marsigliante S, Levi G (2000) Angiotensin II modulates the activity of Na+. ,K+-ATPase in cultured rat astrocytes via the AT1 receptor and protein kinase C-δactivation J Neurochem 74:1325–1331.

    PubMed  CAS  Google Scholar 

  • Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13:1031–1037.

    PubMed  CAS  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530.

    PubMed  CAS  Google Scholar 

  • Nilsson M, Eriksson PS, Ronnback L, Hansson E (1993) GABA induces Ca2+. transients in astrocytes Neuroscience 54:605–614.

    PubMed  CAS  Google Scholar 

  • Nishizaki T, Matsuoka T, Nomura T, Kondoh T, Tamaki N, Okada Y (1999) Store Ca2+. depletion enhances NMDA responses in cultured human astrocytes Biochem Biophys Res Commun 259:661–664.

    PubMed  CAS  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067.

    PubMed  CAS  Google Scholar 

  • North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflugers Arch 452:479–485.

    PubMed  CAS  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465.

    PubMed  CAS  Google Scholar 

  • Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553.

    PubMed  CAS  Google Scholar 

  • Oertel J, Villmann C, Kettenmann H, Kirchhoff F, Becker CM (2007) A novel glycine receptor β-subunit splice variant predicts an unorthodox transmembrane topology. Assembly into heteromeric receptor complexes. J Biol Chem 282:2798–2807.

    CAS  Google Scholar 

  • Olah Z, Lehel C, Anderson WB, Brenneman DE, van Agoston D (1994) Subnanomolar concentration of VIP induces the nuclear translocation of protein kinase C in neonatal rat cortical astrocytes. J Neurosci Res 39:355–363.

    PubMed  CAS  Google Scholar 

  • Panenka W, Jijon H, Herx LM, Armstrong JN, Feighan D, Wei T, Yong VW, Ransohoff RM, MacVicar BA (2001) P2X7. -like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase J Neurosci 21:7135–7142.

    PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2002) Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 542:529–536.

    PubMed  CAS  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116.

    PubMed  CAS  Google Scholar 

  • Pastor A, Chvatal A, Sykova E, Kettenmann H (1995) Glycine- and GABA-activated currents in identified glial cells of the developing rat spinal cord slice. Eur J Neurosci 7:1188–1198.

    PubMed  CAS  Google Scholar 

  • Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ (1996) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71:949–976.

    PubMed  CAS  Google Scholar 

  • Pilitsis JG, Kimelberg HK (1998) Adenosine receptor mediated stimulation of intracellular calcium in acutely isolated astrocytes. Brain Res 798:294–303.

    PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1995a) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+. ]i Glia 13:101–112.

    CAS  Google Scholar 

  • Porter JT, McCarthy KD (1995b) Adenosine receptors modulate [Ca2+. ]i in hippocampal astrocytes in situ J Neurochem 65:1515–1523.

    CAS  Google Scholar 

  • Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455.

    PubMed  CAS  Google Scholar 

  • Puro DG, Yuan JP, Sucher NJ (1996) Activation of NMDA receptor-channels in human retinal Muller glial cells inhibits inward-rectifying potassium currents. Vis Neurosci 13:319–326.

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1909) Histologie du systeme nerveux de l’homme et des vertebres. Paris: Maloine.

    Google Scholar 

  • Retzius GM (1890–1916) Biologische Untersuchungen. Stockholm: Samson and Wallin.

    Google Scholar 

  • Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ (2006) Molecular properties of P2X receptors. Pflugers Arch 452:486–500.

    PubMed  CAS  Google Scholar 

  • Roy ML, Sontheimer H (1995) β-adrenergic modulation of glial inwardly rectifying potassium channels. J Neurochem 64:1576–1584.

    PubMed  CAS  Google Scholar 

  • Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171.

    PubMed  CAS  Google Scholar 

  • Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N. -methyl-d-aspartate receptors Faseb J 15:1270–1272.

    PubMed  CAS  Google Scholar 

  • Seeburg PH, Higuchi M, Sprengel R (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Brain Res Rev 26:217–229.

    PubMed  CAS  Google Scholar 

  • Seifert G, Steinhauser C (2001) Ionotropic glutamate receptors in astrocytes. Prog Brain Res 132:287–299.

    PubMed  CAS  Google Scholar 

  • Shao Y, McCarthy KD (1993) Quantitative relationship between IJ1-adrenergic receptor density and the receptor-mediated calcium response in individual astroglial cells. Mol Pharmacol 44:247–254.

    PubMed  CAS  Google Scholar 

  • Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A 98:4148–4153.

    PubMed  CAS  Google Scholar 

  • Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2+. -elevating muscarinic cholinergic and histaminergic receptors in situ J Neurochem 74:555–563.

    PubMed  CAS  Google Scholar 

  • Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006) Evolution of increased glia–neuron ratios in the human frontal cortex. Proc Natl Acad Sci U S A 103:13606–13611.

    PubMed  CAS  Google Scholar 

  • Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7. receptors in the nervous system Prog Neurobiol 78:327–346.

    PubMed  CAS  Google Scholar 

  • Steinhäuser C, Gallo V (1996) News on glutamate receptors in glial cells. Trends Neurosci 19:339–345.

    PubMed  Google Scholar 

  • Steinhäuser C, Jabs R, Kettenmann H (1994) Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 4:19–35.

    PubMed  Google Scholar 

  • Suadicani SO, Brosnan CF, Scemes E (2006) P2X7. receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling J Neurosci 26:1378–1385.

    PubMed  CAS  Google Scholar 

  • Sumners C, Tang W, Paulding W, Raizada MK (1994) Peptide receptors in astroglia: focus on angiotensin II and atrial natriuretic peptide. Glia 11:110–116.

    PubMed  CAS  Google Scholar 

  • Sun SH, Lin LB, Hung AC, Kuo JS (1999) ATP-stimulated Ca2+. influx and phospholipase D activities of a rat brain-derived type-2 astrocyte cell line, RBA-2, are mediated through P2X7 receptors J Neurochem 73:334–343.

    PubMed  CAS  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor P2X7. Science 272:735–738.

    PubMed  CAS  Google Scholar 

  • Sutin J, Griffith R (1993) β-adrenergic receptor blockade suppresses glial scar formation. Exp Neurol 120:214–222.

    PubMed  CAS  Google Scholar 

  • Tamaru Y, Nomura S, Mizuno N, Shigemoto R (2001) Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 106:481–503.

    PubMed  CAS  Google Scholar 

  • Teaktong T, Graham A, Court J, Perry R, Jaros E, Johnson M, Hall R, Perry E (2003) Alzheimer’s disease is associated with a selective increase in IJ7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia 41:207–211.

    PubMed  Google Scholar 

  • Teaktong T, Graham AJ, Johnson M, Court JA, Perry EK (2004a) Selective changes in nicotinic acetylcholine receptor subtypes related to tobacco smoking: an immunohistochemical study. Neuropathol Appl Neurobiol 30:243–254.

    CAS  Google Scholar 

  • Teaktong T, Graham AJ, Court JA, Perry RH, Jaros E, Johnson M, Hall R, Perry EK (2004b) Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: differential neuronal and astroglial pathology. J Neurol Sci 225:39–49.

    CAS  Google Scholar 

  • Verkhratsky A (2006a) Patching the glia reveals the functional organisation of the brain. Pflugers Arch 453:411–420.

    CAS  Google Scholar 

  • Verkhratsky A (2006b) Calcium ions and integration in neural circuits. Acta Physiol (Oxf) 187:357–369.

    CAS  Google Scholar 

  • Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352.

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412.

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Toescu EC (2006) Neuronal–glial networks as substrate for CNS integration. J Cell Mol Med 10:826–836.

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13:1–10.

    Google Scholar 

  • Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141.

    PubMed  CAS  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640.

    PubMed  CAS  Google Scholar 

  • von Blankenfeld G, Kettenmann H (1991) Glutamate and GABA receptors in vertebrate glial cells. Mol Neurobiol 5:31–43.

    PubMed  CAS  Google Scholar 

  • Walz W, Gimpl G, Ohlemeyer C, Kettenmann H (1994) Extracellular ATP-induced currents in astrocytes: involvement of a cation channel. J Neurosci Res 38:12–18.

    PubMed  CAS  Google Scholar 

  • Wisden W, Seeburg PH (1993) Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol 3:291–298.

    PubMed  CAS  Google Scholar 

  • Xiu J, Nordberg A, Zhang JT, Guan ZZ (2005) Expression of nicotinic receptors on primary cultures of rat astrocytes and up-regulation of the IJ7, IJ4 and β2 subunits in response to nanomolar concentrations of the β-amyloid peptide(1–42). Neurochem Int 47:281–290.

    PubMed  CAS  Google Scholar 

  • Xu T, Pandey SC (2000) Cellular localization of serotonin2A. (5HT2A) receptors in the rat brain Brain Res Bull 51:499–505.

    PubMed  CAS  Google Scholar 

  • Yu WF, Guan ZZ, Bogdanovic N, Nordberg A (2005) High selective expression of IJ7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225.

    PubMed  CAS  Google Scholar 

  • Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982.

    PubMed  CAS  Google Scholar 

  • Ziak D, Chvatal A, Sykova E (1998) Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol Res 47:365–375.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Verkhratsky, A. (2009). Neurotransmitter Receptors in Astrocytes. In: Haydon, P., Parpura, V. (eds) Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79492-1_3

Download citation

Publish with us

Policies and ethics