Skip to main content

Genomic and Geographic Origins of Timothy (Phleum sp.) Based on ITS and Chloroplast Sequences

  • Conference paper
Molecular Breeding of Forage and Turf

Abstract

The relationship among members of the subgenus Phleum was determined using nuclear ribosomal ITS and chloroplast trnL intron DNA sequences. This subgenus is derived from a progenitor of the diploid Phleum alpinum subsp. rhaeticum. The relationships provide evidence of migration, hybridization, polyploidy and speciation associated with historical glaciations.

The subgenus Phleum represents one enormous germplasm pool for breeders and it should now be possible to re-synthesize hexaploid pratense from a wider range of diploid forms than occurred historically. This requires the urgent collection of genetic resources from the centers of diversity within glacial refugia as these resources are almost entirely absent from genebanks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Cenci CA, Pegiati MT, Falistocco E (1984) Phleum pratense. (Gramineae): chromosomal and biometric analysis of Italian populations. Willdenowii 14: 343–353

    Google Scholar 

  • Conert HJ (1998) Phleum. In: Hegi (Ed.) Illustrierte Flora von Mitteleuropa. I/3, Verlag Paul Parey, Berlin-Hamburgpp. 190–206,

    Google Scholar 

  • Ellestrom S, Tijo JH (1950) Note on the chromosomes of Phleum echinatum. Botanical Notes 463–465

    Google Scholar 

  • Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium – Leguminosae). Molecular Phylogenetics and Evolution 39: 688–705

    Article  CAS  PubMed  Google Scholar 

  • Heide OM, Solhaug KA (2001) Growth and reproduction capacities of two bipolar Phleum alpinum. populations from Norway and South Georgia. Artic, Antarctic, and Alpine Research 33: 173–180

    Article  Google Scholar 

  • Hewitt GM (1999) Post glacial recolonisation of European biota. Biological Journal of the Linnaean Society 68: 87–112

    Article  Google Scholar 

  • Hong , QWhite P, Klinka K, Chourmouzis C (1999) Phytogeographical and community similarities of alpine tundras of Changbaishan Summit, and Indian Peaks, USA. Journal of Vegetation Science 10: 869–882

    Article  Google Scholar 

  • Humphries CJ (1980) Phleum. In Tutin TC et al. Flora Europeaea 5. Alismataceae to Orchidaceae (Monocotyledones), Cambridge University Press, Cambridgepp. 239–241,

    Google Scholar 

  • Joachimiak A (2005) Heterochromatin and microevolution in Phleum. In Sharma AK, Sharma A (Eds) Plant Genome: Biodiversity and Evolution. Vol. 1, Science Publishers., Enfieldpp. 89–117, Part B: Phanerogams, chapter 4,

    Google Scholar 

  • Joachimiak A, Kula A (1993) . Cytotaxonomy and karyotype evolution in Phleum sect. Phleum (Poaceae) in Poland. Plant Systematics and Evolution: 188: 11–25

    Google Scholar 

  • Joachimiak A, Kula A (1996) Karyosystematics of the Phleum alpinum. polyploid complex (Poaceae). Plant Systematics and Evolution 203: 11–25

    Article  Google Scholar 

  • Kula A (2005) Searching for a Primeval Phleum, karyotype. In Ludwick F (Ed) Biology of Grasses, Polish Academy of Sciences: Krakow, Poland

    Google Scholar 

  • Kula A, Dudziak B, Sliwinska E, Grabowska-Joachimiak A, Stewart AV, Golczyk H, Joachimiak A. (2006)Cytomorphological studies on American and European Phleum commutatum Gaud. (Poaceae). Acta Biologica Cracoviensia: 4899–108

    Google Scholar 

  • Maire RD (1953) Flore de L'Afrique du Nord. Fl. Afrique N.: 367

    Google Scholar 

  • Nordenskiold H (1945) Cyto-genetic studies in the genus Phleum. Acta Agriculturae Suecana 1: 1–138

    Google Scholar 

  • Nordenskiold H (1957) Segregation ratios in progenies of hybrids between natural and synthesizedPhleum pretense. Hereditas 43: 525–540

    Google Scholar 

  • Soltis PS, Soltis DE (2000)The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences of the United States of America 97: 7051–7057

    Article  CAS  PubMed  Google Scholar 

  • Weber WA (2003) The Middle Asian Element in the Southern Rocky Mountain Flora of the western United States: a critical biogeographical review. Journal of Biogeography 30: 649–688

    Article  Google Scholar 

  • Zernig K (2005) Phleum commutatum and Phleum rhaeticum (Poaceae) in the Eastern Alps: characteristics and distribution. Phyton 45: 65–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan V. Stewart .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this paper

Cite this paper

Stewart, A.V., Joachimiak, A., Ellison, N. (2009). Genomic and Geographic Origins of Timothy (Phleum sp.) Based on ITS and Chloroplast Sequences. In: Molecular Breeding of Forage and Turf. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79144-9_6

Download citation

Publish with us

Policies and ethics