Skip to main content

Two-Component Signaling Systems and Cell Cycle Control in Caulobacter crescentus

  • Chapter
Bacterial Signal Transduction: Networks and Drug Targets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 631))

Abstract

Recent work on the regulation of prokaryotic growth and development by two-component systems (TCS) has revealed unsuspected levels of complexity. In the dimorphic freshwater bacterium Caulobacter crescentus, TCS provide stringent temporal and spatial control of cellular development and cell-cycle progression. While the environmental signals modulating TCS regulatory networks are largely unknown, the components of the network and their interactions with each other are increasingly well-defined. Here, we present an overview of TCS regulation of cell-cycle control in C. crescentus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koshland Jr DE. A response regulator model in a simple sensory system. Science 1977; 196:1055–63.

    Article  PubMed  CAS  Google Scholar 

  2. Hoch JA. Genetic analysis of pleiotropic negative sporulation mutants in Bacillus subtilis. J Bacteriol 1971; 105:896–901.

    PubMed  CAS  Google Scholar 

  3. Ollington JF, Haldenwang WG, Huynh TV et al. Developmentally regulated transcription in a cloned segment of the Bacillus subtilis chromosome. J Bacteriol 1981; 147:432–42.

    PubMed  CAS  Google Scholar 

  4. Stock A, Koshland Jr DE, Stock J. Homologies between the Salmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc Natl Acad Sci USA 1985; 82:7989–93.

    Article  PubMed  CAS  Google Scholar 

  5. Trach KA, Chapman JW, Hoch JA. Deduced product of the stage 0 sporulation gene spo0F shares homology with the Spo0A, OmpR, and SfrA proteins. Proc Natl Acad Sci USA 1985; 82:7260–4.

    Article  PubMed  CAS  Google Scholar 

  6. Skerker JM, Prasol MS, Laub MT Two-Component Signal Transduction Pathways Regulating Growth and Cell Cycle Progression in a Bacterium: A System-Level Analysis. PLoS Biology 2005; 3:e.334.

    Article  CAS  Google Scholar 

  7. Hoch JA, Silhavy TJ, eds. Two-Component signal transduction. Washington, DC: ASM; 1995.

    Google Scholar 

  8. Fabret C, Hoch JA. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 1998; 180:6375–83.

    PubMed  CAS  Google Scholar 

  9. Kobayashi K, Ehrlich SD, Ogasawara N et al. Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 2003; 100:4678–83.

    Article  PubMed  CAS  Google Scholar 

  10. Zhou L, Lei XH, Wanner BL et al. Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 2003; 185:4956–72.

    Article  PubMed  CAS  Google Scholar 

  11. Hecht GB, Lane T, Ohta N et al. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. EMBO J 1995; 14:3915–24.

    PubMed  CAS  Google Scholar 

  12. Quon KC, Marczynski GT, Shapiro L. Cell Cycle Control by an Essential Bacterial Two-Component Signal Transduction Protein. Cell 1996; 84:83–93.

    Article  PubMed  CAS  Google Scholar 

  13. Jacobs C, Domian IJ, Shapiro L et al. Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 1999; 97:111–20.

    Article  PubMed  CAS  Google Scholar 

  14. Wu J, Ohta N, Newton A et al. A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc Natl Acad Sci USA 1999; 96:13068–73.

    Article  PubMed  CAS  Google Scholar 

  15. Jacobs-Wagner C. Regulatory proteins with a sense of direction: cell cycle signalling network in Caulobacter. Mol Microbiol 2004; 51:7–13.

    Article  PubMed  CAS  Google Scholar 

  16. Skerker JM, Laub MT. Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nat Rev Microbiol 2004; 2:325–337.

    Article  PubMed  CAS  Google Scholar 

  17. Skerker JM, Prasol MS, Laub MT et al. (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 2005; 3:e.334.

    Article  CAS  Google Scholar 

  18. Gitai Z. The New Bacterial Cell Biology: Moving Parts and Subcellular Architecture. Cell 2005; 120:577–586.

    Article  PubMed  CAS  Google Scholar 

  19. Poindexter JS. Biological Properties and Classification of the Caulobacter Group. Bacteriol Rev 1964; 28:231–295.

    PubMed  CAS  Google Scholar 

  20. Sommer J, Newton A. Pseudoreversion Analysis Indicates a Direct Role of Cell Division Genes in Polar Morphogenesis and Differentiation in Caulobacter crescentus. Genetics 1991; 129:623–630.

    PubMed  CAS  Google Scholar 

  21. McGrath P, Viollier P, McAdams H. Setting the pace: mechanisms tying Caulobacter cell-cycle progression to macroscopic cellular events. Curr Opin Microbiol 2004; 7:192–197.

    Article  PubMed  CAS  Google Scholar 

  22. Holtzendorff J, Hung D, Shapiro L et al. Oscillating Global Regulators Control the Genetic Circuit Driving a Bacterial Cell Cycle. Science 2004; 304:983–987.

    Article  PubMed  CAS  Google Scholar 

  23. Gorbatyuk B, Marczynski GT. Physiological consequences of blocked Caulobacter crescentus dnaA expression, an essential DnA replication gene. Molecular Microbiology 2001; 40:485–497.

    Article  PubMed  CAS  Google Scholar 

  24. Collier J, Murray SR, Shapiro L. DnaA couples DNA replication and the expression of two cell cycle master regulators. EMBO J 2006; 25:346–356.

    Article  PubMed  CAS  Google Scholar 

  25. Jacobs C, Domian IJ, Shapiro L et al. Cell Cycle-Dependent Polar Localization of an Essential Bacterial Histidine Kinase that Controls DNA Replication and Cell Division. Cell 1999; 97:111–120.

    Article  PubMed  CAS  Google Scholar 

  26. Wu J, Ohta N, Newton A et al. A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc Natl Acad Sci USA 1999; 96:13068–13073.

    Article  PubMed  CAS  Google Scholar 

  27. Quon KC, Yang B, Marczynski GT et al. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome † origin. Proc Natl Acad Sci USA 1998; 95:120–125.

    Article  PubMed  CAS  Google Scholar 

  28. Biondi E, Reisinger S, Laub M et al. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 2006; 444:899–404.

    Article  PubMed  CAS  Google Scholar 

  29. Laub M, Chen S, McAdams H et al. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci USA 2002; 99:4632–4637.

    Article  PubMed  CAS  Google Scholar 

  30. Hottes A, Shapiro L, McAdams H. DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus. Mol Microbiol 2005; 58:1340–1353.

    PubMed  CAS  Google Scholar 

  31. Zweiger G, Shapiro L. Expression of Caulobacter dnaA as a Function of the Cell Cycle. J Bacteriol 1994; 176:401–408.

    PubMed  CAS  Google Scholar 

  32. Gorbatyuk B, Marczynski GT. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. Mol Microbiol 2005; 55:1233–1245.

    Article  PubMed  CAS  Google Scholar 

  33. Domian IJ, Reisenauer A, Shapiro L. Feedback control of a master bacterial cell-cycle regulator. Proc Natl Acad Sci USA 1999; 96:6648–6653.

    Article  PubMed  CAS  Google Scholar 

  34. Reisenauer A, Shapiro L. DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacten. EMBO J 2002; 21:4969–4977.

    Article  PubMed  CAS  Google Scholar 

  35. Reisenauer A, Quon K, Shapiro L. The CtrA Response Regulator Mediates Temporal Control of Gene Expression during the Caulobacter Cell Cycle. J Bacteriol 1999; 181:2430–2439.

    PubMed  CAS  Google Scholar 

  36. Jenal U, Fuchs T. An essential protease involved in bacterial cell-cycle control. EMBO J 1998; 17:5658–5669.

    Article  PubMed  CAS  Google Scholar 

  37. Ryan KR, Judd EM, Shapiro L. J The CtrA Response Regulator Essential for Caulobacter crescentus Cell-cycle Progression Requires a Bipartite Degradation Signal for Temporally Controlled Proteolysis. Mol Biol 2002; 324:443–455.

    Article  CAS  Google Scholar 

  38. Ausmees N, Jacobs-Wagner C. Spatial and Temporal Control of Differentiation and Cell Cycle Progression in Caulobacter Crescentus. Ann Rev Microbiol 2003; 57:225–247.

    Article  CAS  Google Scholar 

  39. Domian IJ, Quon KC, Shapiro L. Cell Type-Specific Phosphorylation and Proteolysis of a Transcriptional Regulator Controls the G1-to-S Transition in a Bacterial Cell Cycle. Cell 1997; 90:415–424.

    Article  PubMed  CAS  Google Scholar 

  40. McGrath P, Iniesta AA, McAdams H et al. A Dynamically Localized Protease Complex and a Polar Specificity Factor Control a Cell Cycle Master Regulator. Cell 2006; 124:535–547.

    Article  PubMed  CAS  Google Scholar 

  41. Iniesta A, McGrath P, Shapiro L et al. A phospho-signaling pathway control the localization activity of a protease complex critical for bacterial cell cycle progression. Proc Natl Acad Sci USA 2006; 103:0935–10940.

    Article  CAS  Google Scholar 

  42. Bylsma N, Drakenberg T. Prokaryotic calcium-binding protein of the calmodulin superfamily FEBS Lett 1992; 299:44–47.

    Article  PubMed  CAS  Google Scholar 

  43. Ohta N, Newton A. The Core Dimerization Domains of Histidine Kinases Contain Recognition Specificity for the Cognate Response Regulator. J Bacteriol 2003; 185:4424–4431.

    Article  PubMed  CAS  Google Scholar 

  44. Sciochetti S, Ohta N, Newton A. The role of polar localization in the function of an essential Caulobacter crescentus tyrosine kinase. Mol Microbiol 2005; 56:1467–1480.

    Article  PubMed  CAS  Google Scholar 

  45. Wheeler RT, Shapiro L. Differential Localization of Two Histidine Kinases Controlling Bacterial Cell Differentiation. Mol Cell 1999; 4:683–694.

    Article  PubMed  CAS  Google Scholar 

  46. Matroule J-Y, Lam H, Jacobs-Wagner et al. Cytokinesis Monitoring during Development: Rapid Pole-to-Pole Shuttling of a Signaling Protein by Localized Kinase and Phosphatase in Caulobacter. Cell 2004; 118:579–590.

    Article  PubMed  CAS  Google Scholar 

  47. Pierce D, O’Donnol D, Brun Y et al. Mutations in DivL and CckA Rescue a divJ Null Mutant of Caulobacter crescentus by Reducing the Activity of CtrA. J Bacteriol 2006; 188:2473–2482.

    Article  PubMed  CAS  Google Scholar 

  48. Viollier PH, Sternbeim N, Shapiro L. A dynamically localized histidine kinase controls the assymetric distribution of polar pili proteins. EMBO J 2002; 21:4420–4428.

    Article  PubMed  CAS  Google Scholar 

  49. Viollier PH, Sternheim N, Shapiro L. Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. Proc Natl Acad Sci USA 2002; 99:13831–13836.

    Article  PubMed  CAS  Google Scholar 

  50. Chen JC, Hottes AK, Shapiro L et al. Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease. EMBO J 2006; 25:377–386.

    Article  PubMed  CAS  Google Scholar 

  51. Chen JC, Viollier PH, Shapiro L. A membrane metalloprotease participates in the sequential degradation of a Caulobacter polarity determinant. Mol Microbiol 2005; 55:1085–1103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Crosson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Purcell, E.B., Boutte, C.C., Crosson, S. (2008). Two-Component Signaling Systems and Cell Cycle Control in Caulobacter crescentus . In: Utsumi, R. (eds) Bacterial Signal Transduction: Networks and Drug Targets. Advances in Experimental Medicine and Biology, vol 631. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78885-2_8

Download citation

Publish with us

Policies and ethics