Skip to main content

Dual Regulation with Ser/Thr Kinase Cascade and a His/Asp TCS in Myxococcus xanthus

  • Chapter
Bacterial Signal Transduction: Networks and Drug Targets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 631))

Abstract

Fruiting body development of Myxococcus xanthus is propelled by temporal gene expression directed via stage-specific intercellular signaling pathways. M. xanthus exhibits social behaviors during its complex life cycle and is a potential source for production of natural products such as secondary metabolites. The numerous signaling pathways of M. xanthus consist of not only the two-component His-Asp phosphorelay system (TCS) but also protein Ser/Thr kinases (PSTKs) that regulate gene expression, motility and multicellular development. Recent studies have uncovered the unique molecular regulatory mechanism of MrpC, a transcription factor essential for fruiting body development and sporulation. mrpC expression is activated early in development by MrpB, which belongs to the NtrC family of TCS. MrpC, is, in turn, a transcriptional activator of fruA that encodes another key transcription factor, FruA. FruA is essential for fruiting body development and sporulation and regulates positively and negatively the synthesis of many developmental proteins. In addition, expression of mrpC during vegetative growth is kept at a low level by the PSTK Pkn8-Pkn 14 kinase cascade which negatively regulates MrpC-binding activity to its own promoter. Therefore, M. xanthus utilizes a novel dual system with both eukaryotic PSTK cascade and prokaryotic TCS signaling systems to tightly and precisely regulate MrpC levels, which activate timely fruA expression and propel fruiting body development and sporulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parkinson JS. Signal transduction schemes of bacteria. Cell 1993; 73:857–871.

    Article  PubMed  CAS  Google Scholar 

  2. Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 1989; 53:450–490.

    PubMed  CAS  Google Scholar 

  3. Dworkin M. (1996) Recent advances in the social and developmental biology of the Myxobacteria. Microbiol Rev 1996; 60:70–102.

    PubMed  CAS  Google Scholar 

  4. Dworkin M, Kaiser D, eds. Myxobacteria II. American Society for Microbiology. Washington, DC: ASM Press, 1993.

    Google Scholar 

  5. Nariya H, Inouye S. An effective sporulation of Myxococcus xanthus requires glycogen consumption via Pkn4-activated 6-phosphofructose kinase. Mol Microbiol 2003; 49:517–528.

    Article  PubMed  CAS  Google Scholar 

  6. Singer M, Kaiser D. Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 1995; 9:1633–1644.

    Article  PubMed  CAS  Google Scholar 

  7. Harris BZ, Kaiser D, Singer M. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes Dev 1998; 12:1022–1035.

    Article  PubMed  CAS  Google Scholar 

  8. Shimkets LJ. Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu Rev Microbiol 1999; 53:525–549.

    Article  PubMed  CAS  Google Scholar 

  9. Kaiser D. Signaling in myxobacteria. Annu Rev Microbiol 2004; 58:75–98.

    Article  PubMed  CAS  Google Scholar 

  10. Kaplan HB, Plamann L. A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol Lett 1996; 139:89–95.

    PubMed  CAS  Google Scholar 

  11. Jelsbak L, Sogaard-Andersen L. Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus. Proc Natl Acad Sci USA 2002; 99:2032–2037.

    Article  PubMed  CAS  Google Scholar 

  12. Hagen TJ, Shimkets LJ. Nucleotide sequence and transcriptional products of the csg locus of Myxococcus xanthus. J Bacteriol 1990; 172:15–23.

    PubMed  CAS  Google Scholar 

  13. Lee BU, Lee K, Mendez J et al. A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)(+)-containing protein. Genes Dev 1995; 9:2964–2973.

    Article  PubMed  CAS  Google Scholar 

  14. Lobedanz S, Søgaard-Andersen L. Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev 2003; 17:2151–2161.

    Article  PubMed  CAS  Google Scholar 

  15. Keseler IM, Kaiser D. σ54, a vital protein for Myxococcus xanthus. Proc Natl Acad Sci USA 1997; 94:1979–1984.

    Article  PubMed  CAS  Google Scholar 

  16. Jelsbak L, Givskov M, Kaiser D. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development Proc Natl Acad Sci USA 2005; 102:3010–3015.

    Article  PubMed  CAS  Google Scholar 

  17. Gorski L, Kaiser D. Targeted mutagenesis of sigma54 activator proteins in Myxococcus xanthus. J Bacteriol 1998; 180:5896–5905.

    PubMed  CAS  Google Scholar 

  18. Sun H, Shi W. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J Bacteriol 2001; 183:4786–4795.

    Article  PubMed  CAS  Google Scholar 

  19. Sun H, Shi W. Analyses of mrp genes during Myxococcus xanthus development. J Bacteriol 2001; 183:6733–6739.

    Article  PubMed  CAS  Google Scholar 

  20. Caberoy NB, Welch RD, Jakobsen JS et al. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J Bacteriol 2003; 185:6083–94.

    Article  PubMed  CAS  Google Scholar 

  21. Kirby JR, Zusman DR. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc Natl Acad Sci USA 2003; 100:2008–2013.

    Article  PubMed  CAS  Google Scholar 

  22. Ueki T, Inouye S. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc Natl Acad Sci USA 2003; 100:8782–8787.

    Article  PubMed  CAS  Google Scholar 

  23. Ogawa M, Fujitani S, Mao X et al. FruA, a putative transcriptional factor essential for the development of Myxococcus xanthus. Mol Microbiol 1996; 22:757–767.

    Article  PubMed  CAS  Google Scholar 

  24. Horiuchi T, Taoka M, Isobe T et al. Role of fruA and csgA in gene expression during development of Myxococcus xanthus: Analysis by two-dimensional gel electrophoresis. J Biol Chem 2002; 277:26753–60.

    Article  PubMed  CAS  Google Scholar 

  25. Ellehauge E, Nørregaard-Madsen M, Søgaard-Andersen L. The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol Microbiol 1998; 30:807–817.

    Article  PubMed  CAS  Google Scholar 

  26. Inouye M, Inouye S, Zusman DR. Biosynthesis and self-assembly of protein S, a development-specific protein of Myxococcus xanthus. Proc Natl Acad Sci USA 1979; 76:209–213.

    Article  PubMed  CAS  Google Scholar 

  27. Horiuchi T, Akiyama T, Inouye S et al. Analysis of dofA, a fruA-dependent developmental gene and its homologue, dofB, in Myxococcus xanthus. J Bacteriol 2002; 184:6803–6810.

    Article  PubMed  CAS  Google Scholar 

  28. Inouye M, Inouye S, Zusman DR. Gene expression during development of Myxococcus xanthus: pattern of protein synthesis. Dev Biol 1979; 68:579–591.

    Article  PubMed  CAS  Google Scholar 

  29. Søgaard-Andersen L, Kaiser D. C factor, a cell-surface-associated intercellular signaling protein, stimulates the Frz signal transduction system in Myxococcus xanthus. Proc Natl Acad Sci USA 1996; 93:2675–2679.

    Article  PubMed  Google Scholar 

  30. McCleary WR, McBride MJ, Zusman DR. Developmental sensory transduction in Myxococcus xanthus involves methylation and demethylation of FrzCD. J Bacteriol 1990; 172:4877–4887.

    PubMed  CAS  Google Scholar 

  31. Ward MJ, Zusman DR. Motility in Myxococcus xanthus and its role in developmental aggregation. Curr Opin Microbiol 1999; 2:624–629.

    Article  PubMed  CAS  Google Scholar 

  32. Thony-Meyer L, Kaiser D. devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J Bacteriol 1993; 175:7450–7462.

    PubMed  CAS  Google Scholar 

  33. Ueki T, Inouye S. Identification of a gene involved in polysaccharide export as a transcription target of FruA, an essential factor for Myxococcus xanthus development. J Biol Chem 2005; 280:32279–32284.

    Article  PubMed  CAS  Google Scholar 

  34. Nariya H, Inouye S. Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus. Mol Microbiol 2005; 58:367–379.

    Article  PubMed  CAS  Google Scholar 

  35. Nariya H, Inouye S. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 2006; 60:1205–1217.

    Article  PubMed  CAS  Google Scholar 

  36. Korner H, Sofia HJ, Zumft WG. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 2003; 27:559–592.

    Article  PubMed  CAS  Google Scholar 

  37. Buck M, Gallegos MT, Studholme DJ et al. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 2000; 182:4129–4136.

    Article  PubMed  CAS  Google Scholar 

  38. Hoover TR, Santero E, Porter S et al. The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 1990; 63:11–22.

    Article  PubMed  CAS  Google Scholar 

  39. Muñoz-Dorado J, Inouye S, Inouye M. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 1991; 67:996–1006.

    Article  Google Scholar 

  40. Udo H, Muñoz-Dorado J, Inouye M et al. Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serine/threonine kinase that blocks the secretion of β-lactamase by phosphorylation. Genes Dev 1995; 9:972–983.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang W, Inouye M, Inouye S. Reciprocal regulation of the differentiation of Myxococcus xanthus by Pkn5 and Pkn6, eukaryotic-like Ser/Thr protein kinases. Mol Microbiol 1996; 20:435–447.

    Article  PubMed  CAS  Google Scholar 

  42. Hanlon WA, Inouye M, Inouye S. Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xanthus. Mol Microbiol 1997; 23:459–471.

    Article  PubMed  CAS  Google Scholar 

  43. Thomasson B, Link J, Stassinopoulos AG et al. MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol Microbiol 2002; 46:1399–1413.

    Article  PubMed  CAS  Google Scholar 

  44. Nariya H, Inouye S. Activation of 6-phosphofructokinase via phosphorylation by Pkn4, a protein Ser/Thr kinase of Myxococcus xanthus. Mol Microbiol 2002; 46:1353–1366.

    Article  PubMed  CAS  Google Scholar 

  45. Nariya H, Inouye S. Factors that Modulate the Pkn4 Kinase Cascade in Myxococcus xanthus. J Mol Microbiol Biotechnol 2005; 9:147–153.

    Article  PubMed  CAS  Google Scholar 

  46. Nariya H, Inouye S. Modulating factors for the Pkn4 kinase cascade in regulating 6-phosphofructokinase in Myxococcus xanthus. Mol Microbiol 2005; 56:1314–1328.

    Article  PubMed  CAS  Google Scholar 

  47. Gill RE, Cull MG. Control of developmental gene expression by cell-to-cell interactions in Myxococcus xanthus. J Bacteriol 1986; 168:341–347.

    PubMed  CAS  Google Scholar 

  48. Gill RE, Karlok M, Benton D. Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling. J Bacteriol 1993; 175:4538–4544.

    PubMed  CAS  Google Scholar 

  49. Tojo N, Inouye S, Komano T. The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus. J Bacteriol 1993; 175:4545–4549.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumiko Inouye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Inouye, S., Nariya, H. (2008). Dual Regulation with Ser/Thr Kinase Cascade and a His/Asp TCS in Myxococcus xanthus . In: Utsumi, R. (eds) Bacterial Signal Transduction: Networks and Drug Targets. Advances in Experimental Medicine and Biology, vol 631. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78885-2_7

Download citation

Publish with us

Policies and ethics