Skip to main content

The Roles of Two-Component Systems in Virulence of Pathogenic Escherichia coli and Shigella spp.

  • Chapter
Bacterial Signal Transduction: Networks and Drug Targets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 631))

Abstract

Two-component systems (TCSs) are well conserved among E. coli strains, including pathogenic E. coli and also closely related Shigella spp. Although 25% of the genome of pathogenic E. coli is strain-specific, only small number of strain-specific TCSs is found. Regulation of virulence genes in response to environmental stimuli is partly dependett on TCSs commonly present in nonpathogenic E. coli strains. Some virulence genes are directly regulated by response regulator of TCS but some are affected at posttranscriptional steps of production or assembly of macromolecule by TCS-induced products. In the process of acquiring virulence traits, regulatory systems for virulence genes expression seem to be built by integrating E. coli backbone TCSs with the virulence regulatory network via transcription regulatory gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004; 2:123–140.

    Article  PubMed  CAS  Google Scholar 

  2. Emody L, Kerenyi M, Nagy G. Virulence factors of uropathogenic Escherichia coli. Int J Antimicrob Agents 2003; 22:29–33.

    Article  PubMed  CAS  Google Scholar 

  3. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998; 11:142–201.

    PubMed  CAS  Google Scholar 

  4. Konkel ME, Tilly K. Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2000; 2:157–166.

    Article  PubMed  CAS  Google Scholar 

  5. Umanski T, Rosenshine I, Friedberg D. Thermoregulated expression of virulence genes in enteropathogenic Escherichia coli. Microbiology 2002; 148:2735–2744.

    PubMed  CAS  Google Scholar 

  6. Ebel F, Deibel C, Kresse AU et al. Temperature-and medium-dependent secretion of proteins by Shiga toxin-producing Escherichia coli. Infect Immun 1996; 64:4472–4479.

    PubMed  CAS  Google Scholar 

  7. Maurelli AT, Sansonetti PJ. Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence. Proc Natl Acad Sci USA 1988; 85:2820–2824.

    Article  PubMed  CAS  Google Scholar 

  8. Abe A, Kenny B, Stein M et al. Characterization of two virulence proteins secreted by rabbit enteropathogenic Escherichia coli, EspA and EspB, whose maximal expression is sensitive to host body temperature. Infect Immun 1997; 65:3547–3555.

    PubMed  CAS  Google Scholar 

  9. Schwan WR, Lee JL, Lenard FA et al. Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect Immun 2002; 70:1391–1402.

    Article  PubMed  CAS  Google Scholar 

  10. Olsen A, Arnqvist A, Hammar M et al. Environmental regulation of curli production in Escherichia coli. Infect Agents Dis 1993; 2:272–274.

    PubMed  CAS  Google Scholar 

  11. Geerlings SE, Brouwer EC, Gaastra W et al. Effect of glucose and pH on uropathogenic and nonuropathogenic Escherichia coli: studies with urine from diabetic and nondiabetic individuals. J Med Microbiol 1999; 48:535–539.

    Article  PubMed  CAS  Google Scholar 

  12. Nakayama S, Watanabe H. Involvement of epxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene. J Bacteriol 1995; 177:5062–5069.

    PubMed  CAS  Google Scholar 

  13. Puente JL, Bieber D Ramer SW et al. The bundle forming pili of enteropathogenic Escherichia coli: transcriptional regulation by environmental signals. Mol Microbiol 1996; 20:87–100.

    Article  PubMed  CAS  Google Scholar 

  14. Abe H, Tatsuno I, Tobe T et al. Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infect Immun 2002; 70:3500–3509.

    Article  PubMed  CAS  Google Scholar 

  15. Calderwood SB, Mekalanos JJ. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol 1987; 169:4759–4764.

    PubMed  CAS  Google Scholar 

  16. Hayashi T, Makino K, Ohnishi M et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 2001; 8:11–22.

    Article  PubMed  CAS  Google Scholar 

  17. Perna NT, Plunkett G, 3rd, Burland V et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7, Nature 2001; 409:529–533.

    Article  PubMed  CAS  Google Scholar 

  18. Welch RA, Burland V, Plunkett G 3rd et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 2002; 99:17020–17024.

    Article  PubMed  CAS  Google Scholar 

  19. Dougan G, Haque A, Pickard D et al. The Escherichia coli gene pool. Curr Opin Microbiol 2001; 4:90–94.

    Article  PubMed  CAS  Google Scholar 

  20. Ogura T, Kurokawa K, Ooka T et al. Complexity of the genome diversity in enterohemorrhagic Escherichia coli O157 revealed by the combinational use of the O157 Sakai oligoDNA microarray and the whole genome PCR scanning. DNA Res 2006; 13:3–14.

    Article  PubMed  CAS  Google Scholar 

  21. Venkatesan MM, Goldberg MB, Rose DJ et al. Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect Immun 2001; 69:3271–3285.

    Article  PubMed  CAS  Google Scholar 

  22. Wei J, Goldberg MB, Burland V et al. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 2003; 71:2775–2786.

    Article  PubMed  CAS  Google Scholar 

  23. Jin Q, Yuan Z, Xu J et al. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 2002; 30:4432–4441.

    Article  PubMed  CAS  Google Scholar 

  24. Rowley G, Spector M, Kormanec J et al. Pushing the envelop: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 2006; 4:383–394.

    Article  PubMed  CAS  Google Scholar 

  25. Hung DL, Raivio TL, Jones CH et al. Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. EMBO J 2001; 20:1508–1518.

    Article  PubMed  CAS  Google Scholar 

  26. Nevesinjac AZ, Raivio TL. The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli. J Bacteriol 2005; 187:672–686.

    Article  PubMed  CAS  Google Scholar 

  27. Jubelin G, Vianney A, Beloin C et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 2005; 187:2038–2049.

    Article  PubMed  CAS  Google Scholar 

  28. Otto K, Silhavy TJ. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci USA 2002; 99:2287–2292.

    Article  PubMed  CAS  Google Scholar 

  29. Mitobe J, Arakawa E, Watanabe H. A sensor of the two-component system CpxA affects expression of the type III secretion system through posttranscriptional processing of InvE. J Bacteriol 2005; 187:107–113.

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki K, Wang X, Weilbacher T et al. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 2002; 184:5130–5140.

    Article  PubMed  CAS  Google Scholar 

  31. Fortune DR, Suyemoto M, Altier C. Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect Immun 2006; 74:331–339.

    Article  PubMed  CAS  Google Scholar 

  32. Eriksson AR, Andersson RA, Pirhonen M et al. Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 1998; 11:743–752.

    Article  PubMed  CAS  Google Scholar 

  33. Lenz DH, Miller MB, Zhu J et al. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol 2005; 58:1186–1202.

    Article  PubMed  CAS  Google Scholar 

  34. Kitten T, Kinscherf TG, McEvoy JL et al. A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol Microbiol 1998; 28:917–929.

    Article  PubMed  CAS  Google Scholar 

  35. Tomenius H, Pernestig AK, Jonas K et al. The Escherichia coli BarA-UvrY two-component system is a virulence determinant in the urinary tract. BMC Microbiol 2006; 6:27.

    Article  PubMed  CAS  Google Scholar 

  36. Bernardini ML, Fontaine A, Sansonetti PJ. The two-component regulatory system ompR-envZ controls the virulence of Shigella flexneri. J Bacteriol 1990; 172:6274–6281.

    PubMed  CAS  Google Scholar 

  37. Bernardini ML, Sanna MG, Fontaine A et al. OmpC is involved in invasion of epithelial cells by Shigella flexneri. Infect Immun 1993; 61:3625–3635.

    PubMed  CAS  Google Scholar 

  38. Prigent-Combaret C, Vidal O, Dorel C et al. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 1999; 181:5993–6002.

    PubMed  CAS  Google Scholar 

  39. Prigent-Combaret C, Brombacher E, Vidal O et al. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 2001; 183:7213–7223.

    Article  PubMed  CAS  Google Scholar 

  40. Tobe T, Ando H, Ishikawa H et al. Dual regulatory pathways integrating the RcsC-RcsD-RcsB signalling system control enterohaemorrhagic Escherichia coli pathogenicity. Mol Microbiol 2005; 58:320–333.

    Article  PubMed  CAS  Google Scholar 

  41. Merighi M, Carroll-Portillo A, Septer AN et al. Role of Salmonella enterica serovar Typhimurium two-component system PreA/PreB in modulating PmrA-regulated gene transcription. J Bacteriol 2006; 188:141–149.

    Article  PubMed  CAS  Google Scholar 

  42. Sperandio V, Torres AG, Kaper JB. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 2002; 43:809–821.

    Article  PubMed  CAS  Google Scholar 

  43. Moss JE, Fisher PE, Vick B et al. The regulatory protein PhoP controls susceptibility to the host inflammatory response in Shigella flexneri. Cell Microbiol 2000; 2:443–452.

    Article  PubMed  CAS  Google Scholar 

  44. Tobe T, Yoshikawa M, Sasakawa C. Thermoregulation of virB transcription in Shigella flexneri by sensing of changes in local DNA superhelicity. J Bacteriol 1995; 177: 1094–1097.

    PubMed  CAS  Google Scholar 

  45. Nakanishi N, Abe H, Ogura Y et al. ppGpp with DksA controls gene expression in the locus of enterocyte effacement (LEE) pathogenicity island of enterohaemorrhagic Escherichia coli through activation of two virulence regulatory genes. Mol Microbiol 2006; 61:194–205.

    Article  PubMed  CAS  Google Scholar 

  46. Herren CD, Mitra A, Palaniyandi SK et al. The BarA-UvrY Two-Component System Regulates Virulence in Avian Pathogenic Escherichia coli O78:K80:H9. Infect Immun 2006; 74:4900–4909.

    Article  PubMed  CAS  Google Scholar 

  47. Nadler C, Shifrin Y, Nov S et al. Characterization of enteropathogenic Escherichia coli mutants that fail to disrupt host cell spreading and attachment to substratum. Infect Immun 2006; 74:839–849.

    Article  PubMed  CAS  Google Scholar 

  48. Vianney A, Jubelin G, Renault S et al. Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis. Microbiology 2005; 151:2487–2497.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Tobe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Tobe, T. (2008). The Roles of Two-Component Systems in Virulence of Pathogenic Escherichia coli and Shigella spp.. In: Utsumi, R. (eds) Bacterial Signal Transduction: Networks and Drug Targets. Advances in Experimental Medicine and Biology, vol 631. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78885-2_13

Download citation

Publish with us

Policies and ethics