Skip to main content

Synaptic Plasticity Within Midbrain Dopamine Centers Contributes to Nicotine Addiction

  • Chapter
  • First Online:
The Motivational Impact of Nicotine and its Role in Tobacco Use

Part of the book series: Nebraska Symposium on Motivation ((NSM,volume 55))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque, E. X., Pereira, E. F., Alkondon, M., Schrattenholz, A., & Maelicke, A. (1997). Nicotinic acetylcholine receptors on hippocampal neurons: Distribution on the neuronal surface and modulation of receptor activity. Journal of Receptor and Signal Transduction Research, 17(1–3), 243–266.

    Google Scholar 

  • Alkondon, M., Pereira, E. F., Wonnacott, S., & Albuquerque, E. X. (1992). Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Molecular Pharmacology, 41(4), 802–808.

    PubMed  Google Scholar 

  • Balfour, D. J., Wright, A. E., Benwell, M. E., & Birrell, C. E. (2000). The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behavioural Brain Research, 113(1–2), 73–83.

    Article  Google Scholar 

  • Benowitz, N. L., Porchet, H., & Jacob, P., 3rd. (1989). Nicotine dependence and tolerance in man: pharmacokinetic and pharmacodynamic investigations. Progress in Brain Research, 79, 279–287.

    Article  PubMed  Google Scholar 

  • Berke, J. D., & Hyman, S. E. (2000). Addiction, dopamine, and the molecular mechanisms of memory. Neuron, 25(3), 515–532.

    Article  PubMed  Google Scholar 

  • Bevins, R. A., Eurek, S., & Besheer, J. (2005). Timing of conditioned responding in a nicotine locomotor conditioning preparation: Manipulations of the temporal arrangement between context cues and drug administration. Behavioural Brain Research, 159(1), 135–143.

    Article  PubMed  Google Scholar 

  • Buisson, B., & Bertrand, D. (2001). Chronic exposure to nicotine upregulates the human (alpha)4 (beta)2 nicotinic acetylcholine receptor function. The Journal of Neuroscience, 21(6), 1819–1829.

    PubMed  Google Scholar 

  • Calabresi, P., Lacey, M. G., & North, R. A. (1989). Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. British Journal of Pharmacology, 98(1), 135–140.

    PubMed  Google Scholar 

  • Castro, N. G., & Albuquerque, E. X. (1995). alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophysical Journal, 68(2), 516–524.

    Article  PubMed  Google Scholar 

  • Charpantier, E., Barneoud, P., Moser, P., Besnard, F., & Sgard, F. (1998). Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport, 9(13), 3097–3101.

    Article  PubMed  Google Scholar 

  • Clarke, P. B. (1990). Mesolimbic dopamine activation – the key to nicotine reinforcement? Ciba Foundation Symposium, 152, 153–162; discussion 162–158.

    PubMed  Google Scholar 

  • Clarke, P. B. (1991). Nicotinic receptor blockade therapy and smoking cessation. British Journal of Addiction, 86(5), 501–505.

    Article  PubMed  Google Scholar 

  • Clarke, P. B., Schwartz, R. D., Paul, S. M., Pert, C. B., & Pert, A. (1985). Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. The Journal of Neuroscience, 5(5), 1307–1315.

    PubMed  Google Scholar 

  • Corrigall, W. A. (1999). Nicotine self-administration in animals as a dependence model. Nicotine Tobaco Research, 1(1), 11–20.

    Article  Google Scholar 

  • Corrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl), 99(4), 473–478.

    Article  Google Scholar 

  • Corrigall, W. A., Coen, K. M., & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research, 653(1–2), 278–284.

    Article  Google Scholar 

  • Corrigall, W. A., Franklin, K. B., Coen, K. M., & Clarke, P. B. (1992). The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl), 107(2–3), 285–289.

    Article  Google Scholar 

  • Dani, J. A., & Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699–729.

    Article  PubMed  Google Scholar 

  • Dani, J. A., & De Biasi, M. (2001). Cellular mechanisms of nicotine addiction. Pharmacology, Biochemistry, and Behavior, 70(4), 439–446.

    Article  PubMed  Google Scholar 

  • Dani, J. A., & Harris, R. A. (2005). Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nature Neuroscience, 8(11), 1465–1470.

    Article  PubMed  Google Scholar 

  • Dani, J. A., & Heinemann, S. (1996). Molecular and cellular aspects of nicotine abuse. Neuron, 16(5), 905–908.

    Article  PubMed  Google Scholar 

  • Dani, J. A., Ji, D., & Zhou, F. M. (2001). Synaptic plasticity and nicotine addiction. Neuron, 31(3), 349–352.

    Article  PubMed  Google Scholar 

  • Di Chiara, G. (1999). Drug addiction as dopamine-dependent associative learning disorder. European Journal of Pharmacology, 375(1–3), 13–30.

    Google Scholar 

  • Di Chiara, G. (2000). Role of dopamine in the behavioural actions of nicotine related to addiction. European Journal of Pharmacology, 393(1–3), 295–314.

    Google Scholar 

  • Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Science of the United States of America, 85(14), 5274–5278.

    Article  Google Scholar 

  • Ge, S., & Dani, J. A. (2005). Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. The Journal of Neuroscience, 25(26), 6084–6091.

    Article  PubMed  Google Scholar 

  • Goldner, F. M., Dineley, K. T., & Patrick, J. W. (1997). Immunohistochemical localization of the nicotinic acetylcholine receptor subunit alpha6 to dopaminergic neurons in the substantia nigra and ventral tegmental area. Neuroreport, 8(12), 2739–2742.

    Article  PubMed  Google Scholar 

  • Gourlay, S. G., & Benowitz, N. L. (1997). Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine. Clinical Pharmacology and Therapeutics, 62(4), 453–463.

    Article  PubMed  Google Scholar 

  • Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., & Dani, J. A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 383(6602), 713–716.

    Article  PubMed  Google Scholar 

  • Grenhoff, J., & Johnson, S. W. (1996). Sulfonylureas enhance GABAA synaptic potentials in rat midbrain dopamine neurones. Acta Physiologica Scandinavica, 156(2), 147–148.

    Article  PubMed  Google Scholar 

  • Guo, J. Z., Tredway, T. L., & Chiappinelli, V. A. (1998). Glutamate and GABA release are enhanced by different subtypes of presynaptic nicotinic receptors in the lateral geniculate nucleus. The Journal of Neuroscience, 18(6), 1963–1969.

    PubMed  Google Scholar 

  • Henningfield, J. E., Stapleton, J. M., Benowitz, N. L., Grayson, R. F., & London, E. D. (1993). Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug and Alcohol Dependence, 33(1), 23–29.

    Article  PubMed  Google Scholar 

  • Imperato, A., Mulas, A., & Di Chiara, G. (1986). Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. European Journal of Pharmacology, 132 (2–3), 337–338.

    Article  Google Scholar 

  • Ji, D., Lape, R., & Dani, J. A. (2001). Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron, 31(1), 131–141.

    Article  PubMed  Google Scholar 

  • Jones, I. W., Bolam, J. P., & Wonnacott, S. (2001). Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. The Journal of Comparative Neurology, 439(2), 235–247.

    Article  PubMed  Google Scholar 

  • Jones, S., Sudweeks, S., & Yakel, J. L. (1999). Nicotinic receptors in the brain: correlating physiology with function. Trends in Neurosciences, 22(12), 555–561.

    Article  PubMed  Google Scholar 

  • Karan, L., Dani, J. A., & Benowitz, N. (2003). The Pharmacology of Nicotine and Tobacco. . In Principles of Addiction Medicine (pp. 225–248): American Society of Addiction Medicine.

    Google Scholar 

  • Klink, R., de Kerchove d'Exaerde, A., Zoli, M., & Changeux, J. P. (2001). Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. The Journal of Neuroscience, 21(5), 1452–1463.

    PubMed  Google Scholar 

  • Le Novere, N., Zoli, M., & Changeux, J. P. (1996). Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. European Journal of Neuroscience, 8(11), 2428–2439.

    Article  PubMed  Google Scholar 

  • Li, X., Rainnie, D. G., McCarley, R. W., & Greene, R. W. (1998). Presynaptic nicotinic receptors facilitate monoaminergic transmission. The Journal of Neuroscience, 18(5), 1904–1912.

    PubMed  Google Scholar 

  • Mansvelder, H. D., Keath, J. R., & McGehee, D. S. (2002). Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron, 33(6), 905–919.

    Article  PubMed  Google Scholar 

  • Mansvelder, H. D., & McGehee, D. S. (2000). Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron, 27(2), 349–357.

    Article  PubMed  Google Scholar 

  • Mansvelder, H. D., & McGehee, D. S. (2002). Cellular and synaptic mechanisms of nicotine addiction. The Journal of Neurobiology, 53(4), 606–617.

    Article  Google Scholar 

  • Martin, S. J., Grimwood, P. D., & Morris, R. G. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annual Review of Neuroscience, 23, 649–711.

    Article  PubMed  Google Scholar 

  • McGehee, D. S., Heath, M. J., Gelber, S., Devay, P., & Role, L. W. (1995). Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269(5231), 1692–1696.

    Article  PubMed  Google Scholar 

  • McGehee, D. S., & Role, L. W. (1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annual Review Physiology, 57, 521–546.

    Article  Google Scholar 

  • Nestler, E. J. (1993). Cellular responses to chronic treatment with drugs of abuse. Critical Reviews in Neurobiology, 7(1), 23–39.

    PubMed  Google Scholar 

  • Nisell, M., Nomikos, G. G., & Svensson, T. H. (1994). Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacology & Toxicology, 75(6), 348–352.

    Google Scholar 

  • Peto, R., Lopez, A. D., Boreham, J., Thun, M., & Heath, C., Jr. (1992). Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet, 339(8804), 1268–1278.

    Article  PubMed  Google Scholar 

  • Peto, R., Lopez, A. D., Boreham, J., Thun, M., Heath, C., Jr., & Doll, R. (1996). Mortality from smoking worldwide. British Medical Bulletin, 52(1), 12–21.

    PubMed  Google Scholar 

  • Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391(6663), 173–177.

    Article  PubMed  Google Scholar 

  • Pidoplichko, V. I., DeBiasi, M., Williams, J. T., & Dani, J. A. (1997). Nicotine activates and desensitizes midbrain dopamine neurons. Nature, 390(6658), 401–404.

    Article  PubMed  Google Scholar 

  • Pidoplichko, V. I., Noguchi, J., Areola, O. O., Liang, Y., Peterson, J., Zhang, T., et al. (2004). Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learning & Memory, 11(1), 60–69.

    Article  Google Scholar 

  • Pontieri, F. E., Tanda, G., Orzi, F., & Di Chiara, G. (1996). Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature, 382(6588), 255–257.

    Article  PubMed  Google Scholar 

  • Quick, M. W., & Lester, R. A. (2002). Desensitization of neuronal nicotinic receptors. The Journal of Neurobiology, 53(4), 457–478.

    Article  Google Scholar 

  • Radcliffe, K. A., & Dani, J. A. (1998). Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. The Journal of Neuroscience, 18(18), 7075–7083.

    PubMed  Google Scholar 

  • Radcliffe, K. A., Fisher, J. L., Gray, R., & Dani, J. A. (1999). Nicotinic modulation of glutamate and GABA synaptic transmission of hippocampal neurons. Annals of the New York Academy of Sciences, 868, 591–610.

    Article  PubMed  Google Scholar 

  • Rathouz, M. M., Vijayaraghavan, S., & Berg, D. K. (1996). Elevation of intracellular calcium levels in neurons by nicotinic acetylcholine receptors. Molecular Neurobiology, 12(2), 117–131.

    Article  PubMed  Google Scholar 

  • Role, L. W., & Berg, D. K. (1996). Nicotinic receptors in the development and modulation of CNS synapses. Neuron, 16(6), 1077–1085.

    Article  PubMed  Google Scholar 

  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.

    Article  PubMed  Google Scholar 

  • Seguela, P., Wadiche, J., Dineley-Miller, K., Dani, J. A., & Patrick, J. W. (1993). Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. The Journal of Neuroscience, 13(2), 596–604.

    PubMed  Google Scholar 

  • Spanagel, R., & Weiss, F. (1999). The dopamine hypothesis of reward: past and current status. Trends in Neurosciences, 22(11), 521–527.

    Article  PubMed  Google Scholar 

  • Stolerman, I. P., & Jarvis, M. J. (1995). The scientific case that nicotine is addictive. Psychopharmacology (Berl), 117(1), 2–10; discussion 14–20.

    Article  Google Scholar 

  • Stolerman, I. P., & Shoaib, M. (1991). The neurobiology of tobacco addiction. Trends in Pharmacological Sciences, 12(12), 467–473.

    Article  PubMed  Google Scholar 

  • Wada, E., McKinnon, D., Heinemann, S., Patrick, J., & Swanson, L. W. (1990). The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (alpha 5) in the rat central nervous system. Brain Research, 526(1), 45–53.

    Article  PubMed  Google Scholar 

  • Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J., et al. (1989). Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. The Journal of Comprative Neurology, 284(2), 314–335.

    Article  Google Scholar 

  • Watkins, S. S., Koob, G. F., & Markou, A. (2000). Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal. Nicotine Tobacco Research, 2(1), 19–37.

    Article  PubMed  Google Scholar 

  • WHO. (1997). Tobacco or health, a global status report. World Health Organization, 495.

    Google Scholar 

  • Wonnacott, S. (1997). Presynaptic nicotinic ACh receptors. Trends in Neurosciences, 20(2), 92–98.

    Article  PubMed  Google Scholar 

  • Wonnacott, S., Drasdo, A., Sanderson, E., & Rowell, P. (1990). Presynaptic nicotinic receptors and the modulation of transmitter release. Ciba Foundation Symposium, 152, 87–101; discussion 102–105.

    PubMed  Google Scholar 

  • Wonnacott, S., Kaiser, S., Mogg, A., Soliakov, L., & Jones, I. W. (2000). Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. European Journal of Pharmacology, 393(1–3), 51–58.

    Article  Google Scholar 

  • Wooltorton, J. R., Pidoplichko, V. I., Broide, R. S., & Dani, J. A. (2003). Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. The Journal of Neuroscience, 23(8), 3176–3185.

    PubMed  Google Scholar 

  • Zhou, F. M., Liang, Y., & Dani, J. A. (2001). Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nature Neuroscience, 4(12), 1224–1229.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andon N. Placzek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Placzek, A.N., Dani, J.A. (2008). Synaptic Plasticity Within Midbrain Dopamine Centers Contributes to Nicotine Addiction. In: Caggiula, A., Bevins, R. (eds) The Motivational Impact of Nicotine and its Role in Tobacco Use. Nebraska Symposium on Motivation, vol 55. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78748-0_2

Download citation

Publish with us

Policies and ethics