Skip to main content

Molecular Pathogenesis of Basal Cell Carcinoma

  • Chapter
Skin Cancer after Organ Transplantation

Part of the book series: Cancer Treatment and Research ((CTAR,volume 146))

Basal cell carcinoma (BCC) is the most frequent cancer among the white population, representing 75% of all skin cancers [1]. The incidence of BCC cases is increasing, probably because of changes of leisure activities and migration to regions with higher solar radiation. BCCs rarely metastasize (<0.1%), and mortality rates are low; however, some tumors grow aggressively and may cause extensive tissue damage. Aggressive growth of BCC correlates with histological subtypes. Nodular and superficial BCC, representing 60% and 25% of all BCC, respectively, are usually considered less aggressive than morpheaform, infiltrative, micronodular, and metatypic BCC, which are associated with a higher rate of local recurrences [2, 3]. Several risk factors for the development of BCC have been described, which include physical characteristics, exposures to environmental carcinogens, immunosuppression, and genetic predisposition. Other genetic changes, acquired subsequently and affecting cell proliferation and apoptosis, may also be involved in tumorigenesis. In the following sections, some recently identified molecular mechanisms are described that are involved in BCC development and which potentially represent targets of new pharmacologic treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marks R (1995) An overview of skin cancers: incidence and causation. Cancer (Phila) 75:607–612.

    Article  CAS  Google Scholar 

  2. Jacobs GH, Rippey JJ, Altini M (1982) Prediction of aggressive behaviour in basal cell carcinoma. Cancer (Phila) 49:533–537.

    Article  CAS  Google Scholar 

  3. Batra RS, Kelly JC (2002) Predictors of extensive subclinical spread in nonmelanoma skin cancer treated with Mohs micrographic surgery. Arch Dermatol 138:1043–1051.

    Article  PubMed  Google Scholar 

  4. Gallagher RP, Hill GB, Bajdik CD et al. (1995) Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol 131:157–163.

    Article  PubMed  CAS  Google Scholar 

  5. Rubin AI, Chen EH, Ratner D (2005) Basal cell carcinoma. N Engl J Med 353:2262–2269.

    Article  PubMed  CAS  Google Scholar 

  6. Euvrard S, Kanitakis J, Claudy A (2003) Skin cancers after organ transplantation. N Engl J Med 348: 1681–1691.

    Article  PubMed  Google Scholar 

  7. Shamanin V, zur Hausen H, Lavergne D et al. (1996) Human papillomavirus infections in nonmelanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients. J Natl Cancer Inst 88:802–811.

    Article  PubMed  CAS  Google Scholar 

  8. Stockfleth E, Nindl I, Sterry W, Ulrich C, Schmook T, Meyer T (2004) Human papillomaviruses in transplant-associated skin cancers. Dermatol Surg 30:604–609.

    Article  PubMed  Google Scholar 

  9. Wieland U, Ritzkowsky A, Stoltidis M et al. (2000) Papillomavirus DNA in basal cell carcinomas of immunocompetent patients: an accidental association? J Invest Dermatol 115:124–128.

    Article  PubMed  CAS  Google Scholar 

  10. Caldeira S, Zehbe I, Accardi R et al. (2003) The E6 and E7 proteins of the cutaneous human papillomavirus type 38 display transforming properties. J Virol 77:2195–2206.

    Article  PubMed  CAS  Google Scholar 

  11. Jackson S, Harwood C, Thomas M et al. (2000) Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev 14:3065–3073.

    Article  PubMed  CAS  Google Scholar 

  12. Flanagan N, Healy E, Ray A et al. (2000) Pleiotropic effects of the melanocortin-1 receptor (MC1R) gene on human pigmentation. Hum Mol Genet 9:2531–2537.

    Article  PubMed  CAS  Google Scholar 

  13. Landi MT, Kanetsky PA, Tsang S et al. (2005) MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a Mediterranean population. J Natl Cancer Inst 97:998–1007.

    Article  PubMed  CAS  Google Scholar 

  14. Liboutet M, Portela M, Delestaing G et al. (2006) MC1R and PTCH gene polymorphism in French patients with basal cell carcinoma. J Invest Dermatol 126:1510–1517.

    Article  PubMed  CAS  Google Scholar 

  15. Griffith HR, Mistry P, Herbert KE et al. (1998) Molecular and cellular effects of ultraviolet light-induced genotoxicity. Crit Rev Clin Lab Sci 35:189–237.

    Article  Google Scholar 

  16. Raza H, Awashi YC, Zaim MT et al. (1991) Glutathione S-transferases in human and rodent skin. J Invest Dermatol 96:463–467.

    Article  PubMed  CAS  Google Scholar 

  17. Kerb B, Brockmöller J, Reum T, Roots I (1997) Deficiency of glutathione S-transferases T1 and M1 as heritable factors of increased cutaneous UV sensitivity. J Invest Dermatol 108:229–232.

    Article  PubMed  CAS  Google Scholar 

  18. Yengl I, Inskip A, Gilford J et al. (1996) Polymorphism at the glutathione S-transferase locus GSTM3: interactions with cytochrome P450 and glutathione S-transferase genotypes as risk factors for multiple basal cell carcinomas. Cancer Res 56:1974–1977.

    Google Scholar 

  19. Lear JT, Heagerty AHM, Smith A et al. (1996) Multiple cutaneous basal cell carcinomas: glutathione S-transferases (GSTM1, GSTT1) and cytochrome P450 (CYP2D6, CYP1A1) polymorphisms influence tumour numbers and accrual. Carcinogenesis (Oxf) 17:1891–1896.

    Article  CAS  Google Scholar 

  20. Ramachandran S, Lear JT, Ramsey H et al (1999) Presentation with multiple basal cell carcinomas: association with glutathione S-transferase and cytochrome P450 genotypes with clinical phenotypes. Cancer Epidemiol Biomarkers Prev 8: 61–67.

    PubMed  CAS  Google Scholar 

  21. Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature (Lond) 218:652–656.

    Article  CAS  Google Scholar 

  22. Sarasin A (1999) The molecular pathways of ultraviolet-induced carcinogenesis. Mutat Res 428: 5–10.

    PubMed  CAS  Google Scholar 

  23. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11:1513–1530.

    PubMed  CAS  Google Scholar 

  24. Vogel U, Hedayati M, Dybdahl M, Grossmann L, Nexo BA (2001) Polymorphismsm of the DNA repair gene XPD: correlations with risk of basal cell carcinoma revisited. Carcinogenesis (Oxf) 22:899–904.

    Article  CAS  Google Scholar 

  25. Vogel U, Olesen A, Wallin H, Overad K, Tjonneland A, Nexo BA (2005) Effect of polymorphisms in XPD, RAI, ASE-1 and ERCC1 on the risk of basal cell carcinoma among Caucasians after age of 50. Cancer Detect Prev 29:209–214.

    Article  PubMed  CAS  Google Scholar 

  26. Lovatt T, Alldersea J, Lear JT et al. (2005) Polymorphisms in the nuclear excision repair gene ERCC2/XPD: association between an exon 6-exon 10 haplotype and susceptibility to cutaneous basal cell carcinoma. Hum Mutat 25:353–359.

    Article  PubMed  CAS  Google Scholar 

  27. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature (Lond) 411:366–374.

    Article  CAS  Google Scholar 

  28. Kimonis VE, Goldstein AM, Pastakia B et al. (1997) Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 69:299–308.

    Article  PubMed  CAS  Google Scholar 

  29. Farndon PA, Del Mastro RG, Evans DGR et al (1992) Location of gene for gorlin syndrome. Lancet 339:581–582.

    Article  PubMed  CAS  Google Scholar 

  30. Reis A, Kuster W, Linss G et al. (1992) Location of gene for nevoid basal cell carcinoma syndrome. Lancet 339: 617.

    Article  PubMed  CAS  Google Scholar 

  31. Hahn H, Wicking C, Zaphiropoulos PG et al. (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851.

    Article  PubMed  CAS  Google Scholar 

  32. Johnson RL, Rothmann AL, Xie J et al. (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1771.

    Article  PubMed  CAS  Google Scholar 

  33. Wicking C, Smyth I, Bale A (1999) The hedgehog signalling pathway in tumorigenesis and development. Oncogene 18:7844–7851.

    Article  PubMed  CAS  Google Scholar 

  34. Ho KS, Scott MP (2002) Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr Opin Neurobiol 12: 57–63.

    Article  PubMed  CAS  Google Scholar 

  35. Boukamp P (2005) Non-melanoma skin cancer: what drives tumor development and progression. Carcinogenesis (Oxf) 26:1657–1667.

    Article  CAS  Google Scholar 

  36. Ingham PW, McMahon AP (2001) Hedgehog signalling in animal development: paradigms and principles. Genes Dev 15:3059–3087.

    Article  PubMed  CAS  Google Scholar 

  37. Ruiz I Altaba, A, Sanchez P, Dahmane N (2002) Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2:361–372.

    Article  PubMed  CAS  Google Scholar 

  38. Tilli CMLJ, van Steensel MAM, Krekels GAM et al. (2005) Molecular aetiology and pathogenesis of basal cell carcinoma. Br J Dermatol 152:1108–1124.

    Article  PubMed  CAS  Google Scholar 

  39. Jih DM, Lyle S, Elenitsas R et al (1999) Cytokeratin 15 expression in trichoepitheliomas and a subset of basal cell carcinomas suggests they originate from hair follicle stem cells. J Cutan Pathol 26:113–118.

    Article  PubMed  CAS  Google Scholar 

  40. Pasca di Magliano M, Hebrok M (2003) Hedgehog signaling in cancer formation and maintenance. Nat Rev Cancer 3:903–911.

    Article  Google Scholar 

  41. Kasper M, Regl G, Frischauf AM, Aberger F (2006) GLI transcription factors: mediators of oncogenic hedgehog signaling. Eur J Cancer 42:437–445.

    Article  PubMed  CAS  Google Scholar 

  42. Kalderon D (2004) Hedgehog signaling: costal-2 bridges the transduction gap. Curr Biol 14:R67–R69.

    Article  PubMed  CAS  Google Scholar 

  43. Callahan CA, Ofstad T, Horng L (2004) MIM/BEG4, a sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes Dev 18:2724–2729.

    Article  PubMed  CAS  Google Scholar 

  44. Kinzler KW, Vogelstein B (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10:634–642.

    PubMed  CAS  Google Scholar 

  45. Sasaki H, Nishizaki Y, Hui C et al. (1999) Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of SHH signaling. Development (Camb) 126:3915–3924.

    CAS  Google Scholar 

  46. Altaba AR (1999) Gli proteins encode context-dependent positive and negative functions: implications for development and disease. Development (Camb) 126:3205–3216.

    Google Scholar 

  47. Cohen MM Jr (2003) The hedgehog signaling network. Am J Med Genet 123A: 5–23.

    Article  PubMed  Google Scholar 

  48. Regl G, Kasper M, Schnidar H et al. (2004) Activation of the BCL2 promoter in response to hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 64:7724–7731.

    Article  PubMed  CAS  Google Scholar 

  49. Eichberger T, Regl G, Ikram MS et al. (2004) FOXE1, a new transcriptional target of GLI2 is expressed in human epidermis and basal cell carcinoma. J Invest Dermatol 122:1180–1187.

    Article  PubMed  CAS  Google Scholar 

  50. Regl G, Kasper M, Schnidar H et al. (2004) The zinc-finger transcription factor GLI-2 antagonizes contact inhibition and differentiation in human epidermal cells. Oncogene 23:1263–1274.

    Article  PubMed  CAS  Google Scholar 

  51. Yoon JW, Kita Y, Frank DJ et al. (2002) Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 277:5548–5555.

    Article  PubMed  CAS  Google Scholar 

  52. Eichberger T, Sander V, Schnidar H et al. (2006) Overlapping and distinct transcriptional regulator properties of the GLI1 and GLI2 oncogenes. Genomics 87:616–632.

    Article  PubMed  CAS  Google Scholar 

  53. Kaufmann E, Knochel W (1996) Five years on the wings of fork head. Mech Dev 57: 3–20.

    Article  PubMed  CAS  Google Scholar 

  54. Wu SC, Grindly J, Winnier GE et al. (1998) Mouse mesenchyme forkhead 2 (Mf2) expression, DNA binding and induction by sonic hedgehog during somitogenesis. Mech Dev 70: 3–13.

    Article  PubMed  CAS  Google Scholar 

  55. Mahlapuu M, Enerback S, Carlsson P (2001) Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling causes lung and foregut malformations. Development (Camb) 128:2397–2406.

    CAS  Google Scholar 

  56. Ye H, Holterman AX, Yoo KW et al. (1999) Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S-phase. Mol Cell Biol 19:8570–8580.

    PubMed  CAS  Google Scholar 

  57. Wang X, Hung NJ, Costa RH (2001) Earlier expression of the transcription factor HFH-11B diminishes induction of p21 (CIP1/WAF1) levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injury. Hepatology 33:1404–1414.

    Article  PubMed  CAS  Google Scholar 

  58. Teh MT, Wong ST, Neill GW et al. (2002) FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res 62:4773–4780.

    PubMed  CAS  Google Scholar 

  59. Crawson AN (2006) Basal cell carcinoma: biology, morphology, and clinical implications. Mod Pathol 19:S127–S147.

    Article  Google Scholar 

  60. Karhadkar SS, Bova GS, Abdallah N et al. (2004) Hedgehog signaling in prostate regeneration, neoplasia, and metastasis. Nature (Lond) 431:707–712.

    Article  CAS  Google Scholar 

  61. Tseng H, Green H (1994) Association of basonuclin with ability of keratinocytes to multiply and with absence of terminal differentiation. J Biol Chem 126:495–506.

    CAS  Google Scholar 

  62. Chiang C, Swan RZ, Grachtchouk M et al. (1999) Essential role for sonic hedgehog during hair follicle morphogenesis. Dev Biol 205: 1–9.

    Article  PubMed  CAS  Google Scholar 

  63. Hahn H, Wojnowski L, Zimmer AM et al. (1998) Rhabdomyosarkomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4:619–622.

    Article  PubMed  CAS  Google Scholar 

  64. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113.

    Article  PubMed  CAS  Google Scholar 

  65. Berman DM, Karhadkar SS, Maitra A et al. (2003) Widespread requirements for hedgehog ligand stimulation in growth of digestive tract tumors. Nature (Lond) 425:846–851.

    Article  CAS  Google Scholar 

  66. Watkins DN, Berman DM, Burkholder SG et al. (2003) hedgehog signaling within airway epithelial progenitors and small-cell lung cancer. Nature (Lond) 422:313–317.

    Article  CAS  Google Scholar 

  67. Thayer SP, di Magliano MP, Heiser PW et al. (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature (Lond) 425:851–856.

    Article  CAS  Google Scholar 

  68. Wicking C, McGlin E (2001) The role of hedgehog signaling in tumorigenesis. Cancer Lett 173: 1–7.

    Article  PubMed  CAS  Google Scholar 

  69. Gailani MR, Stahle-Backdahl M, Leffell DJ et al. (1996) The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14: 78–81.

    Article  PubMed  CAS  Google Scholar 

  70. Kim MY, Park HJ, Baek SC et al. (2002) Mutations of the p53 and PTCH gene in basal cell carcinomas: UV mutation signature and strand bias. J Dermatol Sci 29: 1–9.

    Article  PubMed  Google Scholar 

  71. Reifenberger J, Wolter M, Knobbe BC et al. (2005) Somatic mutations in the PTCH, SMOH, SUFUH, and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 152:43–51.

    Article  PubMed  CAS  Google Scholar 

  72. Xie J, Murone M, Luoh SM et al. (1998) Activating smoothened mutations in sporadic basal cell carcinoma. Nature (Lond) 391: 90–92.

    Article  CAS  Google Scholar 

  73. Dahmane N, Lee J, Robins P et al. (1997) Activation of the transcription factor Gli1 and the sonic hedgehog signalling pathway in skin tumours. Nature (Lond) 389:876–881.

    Article  CAS  Google Scholar 

  74. Ghali l, Wong ST, Green J et al. (1999) Gli protein is expressed in basal cell carcinomas, outer root sheath keratinocytes and a subpopulation of mesenchymal cells in normal human skin. J Invest Dermatol 113:595–599.

    Article  PubMed  CAS  Google Scholar 

  75. Green J, Leigh IM, Poulsom R, Quinn AG (1998) Basal cell carcinoma development is associated with induction of the expression of the transcription factor Gli-1. Br J Dermatol 139:911–915.

    Article  PubMed  CAS  Google Scholar 

  76. Nilsson M, Unden AB, Krause D et al. (2000) Induction of basal cell carcinoma and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci U S A 97:3438–3443.

    Article  PubMed  CAS  Google Scholar 

  77. Couve-Pirat S, Le Bret M, Traiffort E et al. (2004) Functional analysis of novel sonic hedgehog gene mutations identified in basal cell carcinomas from xeroderma pigmentosum patients. Cancer Res 64:3559–3565.

    Article  Google Scholar 

  78. Cui C, Elsam T, Tian Q et al. (2004) Gli proteins up-regulate the expression basonuclin in basal cell carcinomas. Cancer Res 64:5651–5658.

    Article  PubMed  CAS  Google Scholar 

  79. Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3:179–192.

    Article  PubMed  CAS  Google Scholar 

  80. Louro ID, Bailey EC, Li X et al (2002) Comparative gene expression profile analysis of GLI and c-myc in an epithelial model of malignant transformation. Cancer Res 62:5867–5873.

    PubMed  CAS  Google Scholar 

  81. Grachtchouk M, Mo R, Yu S et al. (2000) Basal cell carcinoma in mice overexpressing Gli-2 in skin. Nat Genet 24:216–217.

    Article  PubMed  CAS  Google Scholar 

  82. Ziegler A, Leffell DJ, Kunala S et al. (1993) Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancer. Proc Natl Acad Sci USA 90:4216–4220.

    Article  PubMed  CAS  Google Scholar 

  83. Giglia-Mari G, Sarasin A (2003) TP 53 mutations in human skin cancers. Hum Mutat 21:217–228.

    Article  PubMed  CAS  Google Scholar 

  84. Chan TA, Hermeking A, Lengauer C et al. (1999) 14-3-3sigma is required to prevent mitotic catastrophe after DNA damage. Nature (Lond) 401:616–620.

    Article  CAS  Google Scholar 

  85. Lodygin D, Yazdi AS, Sander CA et al. (2003) Analysis of 14-3-3sigma expression in hyperproliferative skin diseases reveals selective loss associated with CpG-methylation in basal cell carcinoma. Oncogene 22:5519–5524.

    Article  PubMed  CAS  Google Scholar 

  86. Campbell C, Quinn AG, Rees JL (1993) Codon 12 Harvey-ras mutations are rare events in non-melanoma human skin cancer. Br J Dermatol 128:111–114.

    Article  PubMed  CAS  Google Scholar 

  87. Soufir N, Moles JP, Vilmer C et al. (1999) p16 UV mutations in human skin epithelial tumors. Oncogene 18:5477–5481.

    Article  PubMed  CAS  Google Scholar 

  88. Saridaki Z, Koumantaki E, Liloglou T et al. (2000) High frequency of loss of heterozygosity on chromosome region 9p21-p22 but lack of p16INK4a/p19ARF mutations in Greek patients with basal cell carcinoma of the skin. J Invest Dermatol 115:719–725.

    Article  PubMed  CAS  Google Scholar 

  89. Svensson S, Nilsson K, Ringberg A, Landberg G (2003) Invade or proliferate? Two contrasting events in malignant behaviour governed by p16INK4a and an intact pRB pathway illustrated by a model system of basal cell carcinoma. Cancer Res 63:1737–1742.

    PubMed  CAS  Google Scholar 

  90. Brown VL, Harwood CA, Crook T et al. (2004) p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J Invest Dermatol 122:1284–1292.

    Article  PubMed  CAS  Google Scholar 

  91. Hodges A, Smoller BR (2002) Immunohistochemical comparison of p16 expression in actinic keratoses and squamous cell carcinomas of the skin. Mod Pathol 15:1121–1125.

    Article  PubMed  Google Scholar 

  92. Hollstein M, Sidransky D, Vogelstein B et al. (1991) p53 mutations in human cancers. Science 253: 49–53.

    Article  PubMed  CAS  Google Scholar 

  93. Caspari T (2000) How to activate p53. Curr Biol 10:315–317.

    Article  Google Scholar 

  94. Vogt Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18:6145–6157.

    Article  CAS  Google Scholar 

  95. Auepemkiate S, Boonyaphiphat P, Thongsuksai P (2002) p53 expression related to the aggressive infiltrative histopathological feature of basal cell carcinoma. Histopathology (Oxf) 40:568–573.

    Article  Google Scholar 

  96. De Rosa G, Saibano S, Barra E et al. (1993) p53 protein in aggressive and non-aggressive basal cell carcinoma. J Cutan Pathol 20:429–434.

    Article  PubMed  Google Scholar 

  97. Crawson AN, Margo CM, Kadin M et al. (1996) Differential expression of BCL-2 oncogene in human basal cell carcinoma. Hum Pathol 27:355–359.

    Article  Google Scholar 

  98. Abdelsayed RA, Guijarro-Rojas M, Ibrahim NA et al. (2000) Immunohistochemical evaluation of basal cell carcinoma and trichoepithelioma using Bcl-2, Ki67, PCNA, and p53. J Cutan Pathol 28:538–541.

    Google Scholar 

  99. Baum HP, Meurer I, Unteregger G (1993) Ki-67 antigen expression and growth pattern of basal cell carcinoma. Arch Dermatol Res 285:291–295.

    Article  PubMed  CAS  Google Scholar 

  100. Mooney EE, Ruis Peris JM, O’Neill A, Sweeney EC (1995) Apoptotic and mitotic indices in malignant melanoma and basal cell carcinoma. J Clin Pathol 48:242–244.

    Article  PubMed  CAS  Google Scholar 

  101. Tabs S, Avci O (2004) Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur J Dermatol 14:96–102.

    PubMed  Google Scholar 

  102. Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of hedgehog signalling by direct binding of cyclopamine to smoothened. Genes Dev 16:2743–2748.

    Article  PubMed  CAS  Google Scholar 

  103. Hutchin ME, Kariapper MS, Grachtchouk M et al. (2005) Sustained hedgehog signalling is required for basal cell carcinoma proliferation and survival: conditional skin tumourigensis recapitulates the hair growth cycle. Genes Dev 19:214–223.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meyer, T. (2009). Molecular Pathogenesis of Basal Cell Carcinoma. In: Stockfleth, E., Ulrich, C. (eds) Skin Cancer after Organ Transplantation. Cancer Treatment and Research, vol 146. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78574-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-78574-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-78573-8

  • Online ISBN: 978-0-387-78574-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics