Skip to main content

Biosynthesis of Siroheme and Coenzyme F430

  • Chapter
Tetrapyrroles

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The biosynthesis of siroheme from uropoprhyirnogen III in bacteria, yeasts and plants is described. The pathway requires the bis-methylation of uroporphyrinogen III to generate precorrin-2, which is then oxidised to sirohydrochlorin prior to its ferrochelation. A number of structures of the various biosynthetic enzymes have been elucidated and thus the overall process is known in molecular detail. In contrast, the biosynthesis of coenzyme F430, which is synthesized soley by methanogenic bacteria, is poorly understood. It is estimated that between 6 and 8 steps are required for the transformation of uroporphyrinogen III into coenzyme F430, yet none of the biosynthetic enzymes have been identified and only one potential intermediate has been isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murphy MJ, Siegel LM. Siroheme and sirohydrochlorin: The basis for a new type of porphyrin-related prosthetic group common to both assimilatory and dissimilatory sulfite reductases. J Biol Chem 1973; 248:6911–6919.

    CAS  PubMed  Google Scholar 

  2. Murphy MJ, Siegel LM, Tove SR et al. Siroheme: A new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases. Proc Natl Acad Sci USA 1974; 71:612–616.

    Article  CAS  PubMed  Google Scholar 

  3. Vega JM, Garrett RH. Siroheme: A prosthetic group of the Neurospora crassa assimilatory nitrite reductase. J Biol Chem 1975; 250:7980–7989.

    CAS  PubMed  Google Scholar 

  4. Ostrowski J, Hulanicka D. Constitutive mutation of cysJIH operon in a cysB deletion strain of Salmonella typhimurium. Mol Gen Genet 1979; 175:145–149.

    Article  CAS  PubMed  Google Scholar 

  5. Cole JA, Newman BM, White P. Biochemical and genetic characterization of nirB mutants of Escherichia coli K12 pleiotropically defective in nitrite and sulphite reduction. J Gen Microbiol 1980; 120:475–483.

    CAS  PubMed  Google Scholar 

  6. Peakman T, Crouzet J, Mayaux JF et al. Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur J Biochem 1990; 191:315–323.

    Article  CAS  PubMed  Google Scholar 

  7. Crouzet J, Cameron B, Cauchois L et al. Genetic and sequence analysis of an 8.7-kilobase Pseudomonas denitrificans fragment carrying eight genes involved in transformation of precorrin-2 to cobyrinic acid. J Bacteriol1990; 172:5980–5990.

    CAS  PubMed  Google Scholar 

  8. Crouzet J, Cauchois L, Blanche F et al. Nucleotide sequence of a Pseudomonas denitrificans 5.4-kilobase DNA fragment containing five cob genes and identification of structural genes encoding S-adenosyl-L-methionine: Uroporphyrinogen III methyltransferase and cobyrinic acid a,c-diamide synthase. J Bacteriol 1990; 172:5968–5979.

    CAS  PubMed  Google Scholar 

  9. Blanche F, Robin C, Couder M et al. Purification, characterization, and molecular cloning of S-adenosyl-L-methionine: Uroporphyrinogen III methyltransferase from Methanobacterium ivanovii. J Bacteriol 1991; 173:4637–4645.

    CAS  PubMed  Google Scholar 

  10. Warren MJ, Roessner CA, Santander PJ et al. The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J 1990; 265:725–729.

    CAS  PubMed  Google Scholar 

  11. Warren MJ, Stolowich NJ, Santander PJ et al. Enzymatic synthesis of dihydrosirohydrochlorin (precorrin-2) and of a novel pyrrocorphin by uroporphyrinogen III methylase. FEBS Lett 1990; 261:76–80.

    Article  CAS  PubMed  Google Scholar 

  12. Warren MJ, Bolt EL, Roessner CA et al. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J 1994; 302(Pt 3):837–844.

    CAS  PubMed  Google Scholar 

  13. Spencer JB, Stolowich NJ, Roessner CA et al. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett 1993; 335:57–60.

    Article  CAS  PubMed  Google Scholar 

  14. Stroupe ME, Leech HK, Daniels DS et al. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat Struct Biol 2003; 10:1064–1073.

    Article  CAS  PubMed  Google Scholar 

  15. Schubert HL, Blumenthal RM, Cheng X. Many paths to methyltransfer: A chronicle of convergence. Trends Biochem Sci 2003; 28:329–335.

    Article  CAS  PubMed  Google Scholar 

  16. Hansen J, Muldbjerg M, Cherest H et al. Siroheme biosynthesis in Saccharomyces cerevisiae requires the products of both the MET1 and MET8 genes. FEBS Lett 1997; 401:20–24.

    Article  CAS  PubMed  Google Scholar 

  17. Raux E, McVeigh T, Peters SE et al. The role of Saccharomyces cerevisiae Met1p and Met8p in sirohaem and cobalamin biosynthesis. Biochem J 1999; 338(Pt 3):701–708.

    Article  CAS  PubMed  Google Scholar 

  18. Schubert HL, Raux E, Brindley AA et al. The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase. EMBO J 2002; 21:2068–2075.

    Article  CAS  PubMed  Google Scholar 

  19. Johansson P, Hederstedt L. Organization of genes for tetrapyrrole biosynthesis in gram—positive bacteria. Microbiology 1999; l45(Pt 3):529–538.

    Article  Google Scholar 

  20. Raux E, Leech HK, Beck R et al. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem J 2003; 370:505–516.

    Article  CAS  PubMed  Google Scholar 

  21. Schubert HL, Raux E, Matthews MA et al. Structural diversity in metal ion chelation and the structure of uroporphyrinogen III synthase. Biochem Soc Trans 2002; 30:595–600.

    Article  CAS  PubMed  Google Scholar 

  22. Leustek T, Smith M, Murillo M et al. Siroheme biosynthesis in higher plants: Analysis of an S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase from Arabidopsis thaliana. J Biol Chem 1997; 272:2744–2752.

    Article  CAS  PubMed  Google Scholar 

  23. Sakakibara H, Takei K, Sugiyama T. Isolation and characterization of a cDNA that encodes maize uroporphyrinogen III methyltransferase, an enzyme involved in the synthesis of siroheme, which is prosthetic group of nitrite reductase. Plant J 1996; 10:883–892.

    Article  CAS  PubMed  Google Scholar 

  24. Raux-Deery E, Leech HK, Nakrieko KA et al. Identification and characterization of the terminal enzyme of siroheme biosynthesis from Arabidopsis thaliana: A plastid-located sirohydrochlorin ferrochelatase containing a 2FE-2S center. J Biol Chem 2005; 280:4713–4721.

    Article  CAS  PubMed  Google Scholar 

  25. Thauer RK. Biochemistry of methanogenesis: A tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 1998; 144(Pt 9):2377–2406.

    Article  CAS  PubMed  Google Scholar 

  26. Thauer RK, Bonacker LG. Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. Ciba Found Symp 1994; 180:210–222, (discussion 222-217).

    CAS  PubMed  Google Scholar 

  27. Wolfe RS. An historical overview of methanogenesis. In: Ferry JG, ed. Methanogenesis. New York and London: Chapman and Hall, 1993:1–32.

    Google Scholar 

  28. Raux E, Schubert HL, Roper JM et al. Vitamin B12; insights into biosynthesis’s Mount improbable. Bioorganic Chem 1999; 27:100–118.

    Article  CAS  Google Scholar 

  29. Mucha H, Keller E, Weber H et al. Sirohydrochlorin, a precursor of factor F430 biosynthesis in Methanobacterium thermoautotrophicum. FEBS Letts 1985; 190:169–171.

    Article  CAS  Google Scholar 

  30. Pfaltz A, Kobelt A, Huster R et al. Biosynthesis of coenzyme F430 in methanogenic bacteria: Identification of 15,17(3)-seco-F430-17(3)-acid as an intermediate. Eur J Biochem 1987; 170:459–467.

    Article  CAS  PubMed  Google Scholar 

  31. Rose RS. The biosynthesis of coenzyme F430 in Methanothermobacter thermoautotrophicus. University of London 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Warren .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Warren, M.J., Deery, E., Rose, RS. (2009). Biosynthesis of Siroheme and Coenzyme F430 . In: Tetrapyrroles. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78518-9_22

Download citation

Publish with us

Policies and ethics