Skip to main content

Ecological Biochemistry: Allelopathy and Defense Against Herbivores

  • Chapter
Plant Physiological Ecology

Abstract

Plants contain a vast array of compounds referred to as secondary metabolites that play no role in primary catabolic or biosynthetic pathways. Many of these metabolites influence important ecological interactions (e.g., deterring herbivores, protection against pathogens, allelopathy, symbiotic associations, seed germination of parasites, or interactions with pollinators).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alborn, H.T., Turlings, T.C.J., Jones, T.H., Stenhagen, G., Loughrin, J.H., & Tumlinson, J.H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276: 945–949.

    CAS  Google Scholar 

  • Alfenito, M.R., Souer, E., Goodman, C.D., Buell, R., Mol, J., Koes, R., & walbot, V. 1998. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10: 1135–1149.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ayres, M.P., Clausen, T.P., Redman, A.M., & Reichardt, P.B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78: 1696–1712.

    Google Scholar 

  • Bais, H.P., Park, S.-W., Weir, T.L., Callaway, R.M., & Vivanco, J.M. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26–32.

    CAS  PubMed  Google Scholar 

  • Baldwin, I.T. 1999. Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity. J. Chem. Ecol. 25: 3–30.

    CAS  Google Scholar 

  • Baldwin, I.T., Halitschke, R., Paschold, A., Vn Dahl, C.C., & Preston, C.A. 2006. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311, 812–815.

    CAS  PubMed  Google Scholar 

  • Bartholomew, B. 1970. Bare zone between California shrub and grassland communities: the role of animals. Science 170: 1210–1212.

    CAS  PubMed  Google Scholar 

  • Bennett, R.N. & Wallsgrove, R.M. 1994. Secondary metabolites in plant defence mechanisms. New Phytol. 127: 617–633.

    CAS  Google Scholar 

  • Bergelson, J. & Purrington, C.B. 1996. Surveying patterns in the cost of resistance in plants. Am. Nat. 148: 536–558.

    Google Scholar 

  • Birkett, M.A., Chamberlain, K., Hooper, A.M., & Pickett, J.A. 2001 Does allelopathy offer real promise for practical weed management and for explaining rhizosphere interactions involving higher plants? Plant Soil 232: 31–39.

    CAS  Google Scholar 

  • Bouwmeester, H.J., Verstappen, F.W.A., Posthumus, M.A., & Dicke, M. 1999. Spider mite-induced (SS)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiol. 121: 173–180.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant, J.P., Chapin III, F.S., & Klein, D.R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368.

    CAS  Google Scholar 

  • Bryant, J.P., Tahvanainen, J., Sulkinoja, M., Julkunen-Titto, R., Reichardt, P., & Green, T. 1989. Biogeographic evidence for the evolution of chemical defense by boreal birch and willow against mammalian browsing. Am. Nat. 134: 20–34.

    Google Scholar 

  • Bryant, J.P., Heitkonig, I., Kuropat, P., & Owen-Smith, N. 1991. Effects of severe defoliation on the long-term resistance to insect attack and on leaf chemistry in six woody species of the southern African savanna. Am. Nat. 137: 50–63.

    Google Scholar 

  • Bryant, J.P., Reichardt, P.B., Clausen, T.P., Provenza, F.D., & Kuropat, P.J. 1992. Woody plant-mammal interactions. In: Herbivores: their interactions with secondary plant metabolites. Vol II, Ecological and evolutionary processes, 2nd edition, G.A. Rosenthal (ed). Academic Press, San Diego, pp. 343–370.

    Google Scholar 

  • Carlini, C.R. & Grossi-de-Sá, M.F. 2002. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40: 1515–1539.

    CAS  PubMed  Google Scholar 

  • Cates, R.G. & Orians, G.H. 1975. Successional status and the palatability of plants to generalized herbivores. Ecology 56: 410–418.

    Google Scholar 

  • Chitwood, D.J. 2002. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 40: 221–249.

    CAS  PubMed  Google Scholar 

  • Chou, C.-H. & Kuo, Y.-L. 1986. Allelopathic research of subtropical vegetation in Taiwan. III. Allelopathic exclusion of understory by Leucaena leucophylla (Lam.) de Wit. J. Chem. Ecology 12: 1431–1448.

    CAS  Google Scholar 

  • Chrispeels, M.J. & Raikhel, N.V. 1991. Lectins, lectin genes, and their role in plant defense. Plant Cell 3: 1–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clausen, T.P., Reichardt, P.B., Bryant, J.P., Werner, R.A., Post, K., & Frisby, K. 1989. A chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. J. Chem. Ecol. 15: 2335–2346.

    CAS  PubMed  Google Scholar 

  • Coley, P.D. 1986. Costs and benefits of defense by tannins in a neotropical tree. Oecologia 70: 238–241.

    Google Scholar 

  • Coley, P.D., Bryant, J.P., & Chapin III, F.S. 1985. Resource availability and plant anti-herbivore defense. Science 230: 895–899.

    CAS  PubMed  Google Scholar 

  • Coleman, J.O.D., Blake-Kalff, M.M.A., & Davies, T.G.E. 1997. Detoxification of xenobiotics by plants: Chemical modification and vacuolar compartmentation. Trends Plant Sci. 2: 144–151.

    Google Scholar 

  • Constabel, C.P., Yip, L., Patton, J.J., & Christopher, M.E. 2000. Polyphenol oxidas from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol. 124: 285–295.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cunningham, S.D. & Berti, W.R. 1993. Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev. Biol. 29P: 207–212.

    Google Scholar 

  • De Jong, T. 1995. Why fast-growing plants do not bother about defence. Oikos 74: 545–548.

    Google Scholar 

  • Dell, B. & McComb, A.J. 1974. Resin production and glandular hairs in Beyeria viscosa (Labill.) Miq. (Euphorbiaceae). Aust. J. Bot. 25: 195–210.

    Google Scholar 

  • De Luca, V. & St Pierre, B. 2000. The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci. 5: 168–173.

    PubMed  Google Scholar 

  • Dicke, M. & Dijkman, H. 2001. Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants. Biochem. Syst. Ecol. 29: 1075–1087.

    CAS  Google Scholar 

  • Dicke, M., Agrawal, A.A. & Bruin, J. 2003. Plant talk, but are they deaf? Trends Plant Sci. 8: 403–405.

    CAS  PubMed  Google Scholar 

  • Ding, J., Sun, Y., Xiao, C.L., Shi, K., Zhou, Y.H., & Yu, J.Q. 2007. Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J. Exp. Bot. 58: 3765–3773.

    CAS  PubMed  Google Scholar 

  • Dirzo, R. & Raven. P.H. 2003. Global state of biodiversity and loss. Annu. Rev. Environ. Res. 28: 137–167.

    Google Scholar 

  • Dolch, R. & Tscharntke, T. 2000. Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125: 504–511.

    Google Scholar 

  • Eckstein-Ludwig, U., Webb, R.J., Van Goethem, I.D.A., East, J.M., Lee, A.G., Kimura, M., O’Neill, P.M., Bray, P.G., Ward, S.A., & Krishna, S. 2003. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424: 957–961.

    CAS  PubMed  Google Scholar 

  • Ehrlich, P.R. & Raven, P.H. 1964. Butterflies and plants: A study in coevolution. Evolution 18: 586–608.

    Google Scholar 

  • Ernst, W.H.O. 1990. Ecological aspects of sulfur metabolism. In: Sulfur nutrition and sulfur assimilation in higher plants, H. Rennenberg, C. Brunold, L.J. De Kok, & I. Stulen (eds). SPB Academic Publishing, The Hague, pp. 131–144.

    Google Scholar 

  • Etzler, M.E. 1985. Plant lectins: Molecular and biological aspects. Annu. Rev. Plant Physiol. 36: 209–234.

    CAS  Google Scholar 

  • Feng, Z. & Hartel, P.G. 1996. Factors affecting production of COS and CS2 in Leucaena and Mimosa species. Plant Soil 178: 215–222.

    CAS  Google Scholar 

  • Ferry, N., Martin, G., Edwards, M.G., Gatehouse, J.A., & Gatehouse, A.M.R. 2004. Plant–insect interactions: molecular approaches to insect resistance. Curr. Opin. Biotechnol. 15: 1–7.

    Google Scholar 

  • Flores, H.E., Vivanco, J.M., Loyola-Vargas, V.M. 1999. “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci. 4: 220–226.

    PubMed  Google Scholar 

  • Franceschi, V.R., Krekling, T., Berryman, A.A., & Christiansen, E. 1998. Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactions. Am. J. Bot. 85: 601–615.

    CAS  PubMed  Google Scholar 

  • Gatehouse, J.A. 2002 Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156: 145–169.

    CAS  Google Scholar 

  • Gershenzon, J. 1984. Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Phytochemical adaptations to stress, B.N. Timmermann, C. Steelink, & F.A. Leowus (eds). Plenum Press, New York, pp. 273–320.

    Google Scholar 

  • Giri, A.P., Harsulkar, A.M., Deshpande, V.V., Sainani, M.N., Gupta, V.S., & Ranjekar, P.K. 1998. Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol. 116: 393–401.

    CAS  PubMed Central  Google Scholar 

  • Gleadow, R.M., Foley, W.J., & Woodrow, I.E. 1998. Enhanced CO2 alters the relationship between photosynthesis and defence in cyanogenic Eucalyptus cladocalyx F. Muell. Plant Cell Environ. 21: 12–22.

    CAS  Google Scholar 

  • Guerrieri, E., Poppy, G.M., Powell, W., Rao, R., & Pennacchio, F. 2002 Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J. Chem. Ecol. 28: 1703–1715.

    CAS  PubMed  Google Scholar 

  • Halkier, B.A. & Gershenzon, J. 2006 Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57: 303–333.

    CAS  PubMed  Google Scholar 

  • Hamilton, J.G., Zangerl, A.R., DeLucia, E.H., & Berenbaum, M.R. 2001. The carbon-nutrient balance hytothesis: its rise and fall. Ecol. Lett. 4: 86–95.

    Google Scholar 

  • Harborne, J.B. 1988. Introduction to ecological biochemistry. Academic Press, New York.

    Google Scholar 

  • Hartley, M.R., Chaddock, J.A., & Bonness, M.S. 1996. The structure and function of ribosome-inactivating proteins. Trends Plant Sci. 1: 254–260.

    Google Scholar 

  • Hartmann, T. 1999. Chemical ecology of pyrrolizidine alkaloids. Planta 207: 483–495.

    CAS  Google Scholar 

  • Hashimoto, T. & Yamada, Y. 1994. Alkaloid biogenesis: molecular aspects. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 257–285.

    CAS  Google Scholar 

  • Haukioja, E. 1980. On the role of plant defenses in the fluctuations of herbivore populations. Oikos 35: 202–213.

    Google Scholar 

  • Haukioja, E. & Neuvonen, S. 1985. Induced long-term resistance of birch foliage against defoliators: Defensive or incidental. Ecology 66: 1303–1308.

    Google Scholar 

  • Heil, M. & Baldwin, I.T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7: 61–67.

    CAS  PubMed  Google Scholar 

  • Heil, M., Fiala, B., Maschwitz, U., & Linsenmaier, K.U. 2001. On benefits of indirect defence: short- and long-term studies of antiherbivore protection via mutualistic ants. Oecologia 126: 395–403.

    Google Scholar 

  • Heinstein, P.F. & Chang, C.-J. 1994. Taxol. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 663–674.

    CAS  Google Scholar 

  • Herms, D.A. & Mattson, W.J. 1992. The dilemma of plants: to grow or defend. Quart. Rev. Biol. 67: 283–325.

    Google Scholar 

  • Hilder, V.A., Powell, K.S., Gatehouse, A.M.R., Gatehouse, J.A., Gatehouse, L.N., Shi, Y., Hamilton, W.D.O., Merryweather, A., Newell, C.A., Timans, J.C., Peumans, W.J., Van Damme, E., & Boulter, D. 1995. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res. 4: 18–25.

    CAS  Google Scholar 

  • Howe, H.F. & Westley, L.C. 1988. Ecological relationships of plants and animals. Oxford University Press, New York.

    Google Scholar 

  • Ishimoto, M. & Chrispeels, M.J. 1996. Protective mechanism of the Mexican bean weevil against high levels of α-amylase inhibitor in the common bean. Plant Physiol. 111: 393–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jhee, E.M., Boyd, R.S., & Eubanks, M.D. 2005. Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode. New Phytol. 168: 331–344.

    CAS  PubMed  Google Scholar 

  • Jose, S. & Gillespie, A.R. 1998a. Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut-corn (Zea mays L.) alley cropping system in the midwestern USA. Plant Soil 203: 191–197.

    CAS  Google Scholar 

  • Jose, S. & Gillespie, A.R. 1998b. Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth physiology. Plant Soil 203: 199–205.

    CAS  Google Scholar 

  • Kahl, J., Siemens, D.H., Aerts, R.J., Gaebler, R., Kuehnemann, F., Preston, C.A. & Baldwin, I.T. 2000. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210: 336–342.

    CAS  PubMed  Google Scholar 

  • Kakes, P. 1990 Properties and functions of the cyanogenic system in higher plants. Euphytica 48: 25–43.

    CAS  Google Scholar 

  • Karban, R. & Agrawal, A.A. 2002. Herbivore offense. Annu. Rev. Ecol. Syst. 33: 641–664.

    Google Scholar 

  • Karban, R., Baldwin, I.T., Baxter, K.J., Laue, G., & Felton, G.W. 2000. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125: 66–71.

    Google Scholar 

  • Karban, R., Maron, J., Felton, G.W., Ervin, G., & Eichenseer, H. 2003 Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 100: 325–332.

    Google Scholar 

  • Katsvairo, T.W., Rich, J.R., & Dunn, R.A. 2006. Perennial grass rotation: an effective and challenging tactic for nematode management with many other positive effects. Pest Manage. Sci. 62: 793–796.

    CAS  Google Scholar 

  • Keller, H., Blein, J.-P., Bonnet, P., & Ricci, P. 1996. Physiological and molecular characteristics of elicitin-induced systemic acquired resistance in tobacco. Plant Physiol. 110: 365–376.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kessler, A. 2006. Plant–insect interactions in the era of consolidation in biological sciences. Nicotiana attenuata as an ecological expression system. In: Chemical ecology: from gene to ecosystem, M. Dicke & W. Takken (eds.), Springer, Dordrecht, pp. 19–37.

    Google Scholar 

  • Kimmerer, T.W. & Potter, D.A. 1987. Nutritional quality of specific leaf tissues and selective feeding by a specialist leafminer. Oecologia 71: 548–551.

    Google Scholar 

  • Koch, K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509–540.

    CAS  PubMed  Google Scholar 

  • Koiwa, H., Bressan, R.A., & Hasegawa, P.M. 1997. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2: 379–384.

    Google Scholar 

  • Korth, K.L. & Dixon, R.A. 1997. Evidence for chewing insect-specific molecular events distinct from a general wound response in leaves. Plant Physiol. 115: 1299–1305.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambers, H. & Poorter, H. 2004. Inherent variation in growth rate between higher plant: A search for physiological causes and ecological consequences. Adv. Ecol. Res. 34: 283–362.

    Google Scholar 

  • Lata, J.-C., Degrange, V., Raynaud, X., Maron, P.-A., Lensi, R., & Abbadie, L. 2004. Grass populations control nitrification in savanna soils. Funct. Ecol. 18: 605–611.

    Google Scholar 

  • Lerdau, M., Litvak, M., Palmer, P., & Monson, R. 1997. Controls over monoterpene emissions from boreal forest conifers. Tree Physiol. 17: 563–569.

    CAS  PubMed  Google Scholar 

  • Leung, T.-W. C., Williams, D.H., Barna, J.C.J., Foti, S., & Oelrichs, P.B. 1986. Structural studies on the peptide moroidin from Laporta moroides. Tetrahedron 42: 3333–3348.

    CAS  Google Scholar 

  • Lieberei, R., Biehl, B., Giesemann, A., & Junqueira, N.T.V. 1989. Cyanogenesis inhibits active defense reactions in plants. Plant Physiol. 90: 33–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loomis, W.E. 1932. Growth-differentiation balance vs. carbohydrate-nitrogen ratio. Proc. Am. Soc. Hortic. Sci. 29: 240–245.

    CAS  Google Scholar 

  • Lord, J.M. & Roberts, L.M. 1996. The intracellular transport of ricin: Why mammalian cells are killed and how Ricinus cells survive. Plant Physiol. Biochem. 34: 253–261.

    CAS  Google Scholar 

  • Lorio, P.L., Jr. 1986. Growth-differentiation balance: A basis for understanding southern pine beetle-tree interactions. For. Ecol. Manage. 14: 259–273.

    Google Scholar 

  • Macías, F.A., Oliveros-Bastidas, A., Marín, D., Castellano, D., Simonet, A.M., & Molinillo, J.M.G. 2005. Degradation studies on benzoxazinoids. Soil degradation dynamics of (2R)-2-O-β-D-glucopyranosyl-4-hydroxy-(2H)- 1,4-benzoxazin-3(4H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from Gramineae. J. Agric. Food Chem. 53: 554–561.

    PubMed  Google Scholar 

  • Mattiacci, L., Dicke, M., & Posthumus, M.A. 1995. β-galactosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA 92: 2036–2040.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKey, D., Waterman, P.G., Mbi, C.N., Gartlan, J.S., & Struhsaker, T.T. 1978. Phenolic content of vegetation in two African rain forests: Ecological implications. Science 202: 61–63.

    Google Scholar 

  • McMahon, J.M., White, W.L.B., & Sayre, R.T. 1995. Cyanogenesis in cassava (Manihot esculenta Crantz. J. Exp. Bot. 46: 731–741.

    CAS  Google Scholar 

  • Muller, C.H., Muller, W.H., & Haines, B.L. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143: 471–473.

    CAS  PubMed  Google Scholar 

  • Nimbal, C.I., Yerkes, C.N., Weston, L.A., & Weller, S.C. 1996. Herbicidal activity acitivity and site of action of the natural product sorgoleone. Pesticide Biochem. Physiol. 54: 73–83.

    CAS  Google Scholar 

  • Northup, R.R., Yu, Z., Dahlgren, R.A., & Vogt, K.A. 1995. Polyphenol control of nitrogen release from pine litter. Nature 377: 227–229.

    CAS  Google Scholar 

  • Paavolainen, L., Kitunen, V., & Smolander, A. 1998. Inhibition of nitrification in forest soil by monoterpenes. Plant Soil 205: 147–154.

    CAS  Google Scholar 

  • Paschold, A., Halitschke, R., & Baldwin, I.T. 2006. Using “mute” plants to translate volatile signals. Plant J. 45: 275–291.

    CAS  PubMed  Google Scholar 

  • Pellmyr, O. 1997. Stability of plant-animal mutualism: Keeping the benefactors at bay. Trends Plant Sci. 2: 408–409.

    Google Scholar 

  • Penuelas, J., Ribas-Carbó, M., & Giles, L. 1996. Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase. J. Chem. Ecol. 22: 801–805.

    CAS  PubMed  Google Scholar 

  • Petersen, B.L., Andréasson, E., Bak, S., Agerbirk, N., & Halkier, B.A. 2001. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Planta 212: 612–618.

    CAS  PubMed  Google Scholar 

  • Peumans, W.J. & Van Damme, E.J.M. 1995. Lectins as plant defense proteins. Plant Physiol. 109: 347–352.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piluk J., Hartel, P.G., & Haines, B.L. 1998. Production of carbon disulfide (CS2) from L-djenkolic acid in the roots Mimosa pudica L. Plant Soil 200: 27–32.

    CAS  Google Scholar 

  • Pollard, A.J. & Briggs, D. 1984. Genecological studies of Urtica dioica L. III Stinging hairs and plant-herbivore interactions. New Phytol. 97: 507–522

    Google Scholar 

  • Poorter, H. & Bergkotte, M. 1992. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15: 221–229.

    CAS  Google Scholar 

  • Pueyo, J.J. & Delgado-Salinas, A. 1997. Presence of α-amylase inhibitor in some members of the subtribe Phaselinae (Phaseoleae: Fabaceae). Am. J. Bot. 84: 79–84.

    CAS  Google Scholar 

  • Raikhel, N.V., Lee, H.-I., & Broekaert, W.G. 1993. Structure and function of chitin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 591–615.

    CAS  Google Scholar 

  • Rask, L,, Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B. & Meijer, J. 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42: 93–114.

    CAS  PubMed  Google Scholar 

  • Rasmann, S., Köllner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., & Turlings, T.C.J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434: 732–737.

    CAS  PubMed  Google Scholar 

  • Rasmussen, J.A., Hejl, A.M., Einhellig, F.A., & Thomas, J.A. 1992. Sorgoleone from root exudate inhibits mitochondrial functions. J. Chem. Ecol. 18: 197–207.

    CAS  PubMed  Google Scholar 

  • Ravanel, P., Tissut, M., & Douce, R. 1986. Platanetin: a potent natural uncoupler and inhibitor of the exogenous NADH dehydrogenase in intact plant mitochondria. Plant Physiol. 80: 500–504.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Renwick, J.A.A. & Lopez, K. 1999. Experience-based food consumption by larvae of Pieris rapae: addiction to glucosinolates? Entomol. Exp. Applic. 91: 51–58.

    CAS  Google Scholar 

  • Rhoades, D.F. 1985. Offensive-defensive interactions between herbivores and plants: Their relevance in herbivore population dynamics and ecological theory. Am. Nat. 125: 205–238.

    Google Scholar 

  • Rice-Evans, C.A., Miller, N.J., & Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152–159.

    Google Scholar 

  • Ridenour, W.M. & Callaway, R.M. 2001. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126: 444–450.

    Google Scholar 

  • Roberts, T.H., Rasmusson, A.G., & Møller, I.M. 1996. Platanetin and 7-iodo-acridone-4-carboxylic acid are not specific inhibitors of respiratory NAD(P)H dehydrogenases in potato tuber mitochondria. Physiol. Plant. 96: 263–267.

    CAS  Google Scholar 

  • Romero, G.Q. & Benson, W.W. 2004. Leaf domatia mediate mutualism between mites and a tropical tree. Oecologia 140: 609–616.

    PubMed  Google Scholar 

  • Röse, U.S.R., Manukian, A., Heath, R.R., & Tumlinson, J.H. 1996. Volatile semiochemicals released from undamaged cotton leaves. A systemic response of living plants to caterpillar damage. Plant Physiol. 111: 487–495.

    PubMed Central  PubMed  Google Scholar 

  • Sagers, C.L., Ginger, S.M., & Evans, R.D. 2000. Carbon and nitrogen isotopes trace nutrient exchange in an ant-plant mutualism Oecologia 123: 582–586.

    Google Scholar 

  • Schroeder, H.E., Gollasch, S., Moore, A., Tabe, L.M., Craig, S., Hardie, D.C., Chrispeels, M.J., Spences, D., & Higgins, T.J.V. 1995. Bean β-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol. 107: 1233–1239.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuler, M.A. 1996. The role of cytochrome P450 monooxygenase in plant-insect interactions. Plant Physiol. 112: 1411–1419.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sehmer, L., Fontaine, V., Antoni, F., & Dizengremel, P. 1998. Effects of ozone and elevated atmospheric carbon dioxide on carbohydrate metabolism of sprice needles. Catabolic and detoxification pathways. Physiol. Plant. 102: 605–611.

    CAS  Google Scholar 

  • Selmar, D. 1993. Transport of cyanogenic glucosides: linustatin uptake by Hevea cotyledons. Planta 191: 191–199.

    Google Scholar 

  • Selmar, D., Liebererei, R., & Biehl, B. 1988. Mobilization and utilization of cyanogenic glycosides. Plant Physiol. 86: 711–716.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selmar, D., Grocholewski, S., & Seigler, D.S. 1990. Cyanogenic lipids. Utilization during seedling development of Ungnadia speciosa. Plant Physiol. 93: 631–636.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stock, W.D., Le Roux, D., & Van der Heyden, F. 1993. Regrowth and tannin production in woody and succulent karoo shrubs in response to simulated browsing. Oecologia 96: 562–568.

    Google Scholar 

  • Subbarao, G.V., Ishikawa, T., Ito, O., Nakahara, K., Wang, H.Y., & Berry, W.L. 2006. A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288: 101–112.

    CAS  Google Scholar 

  • Subbarao, G., Rondon, M., Ito, O., Ishikawa, T., Rao, I., Nakahara, K., Lascano, C., & Berry, W. 2007a. Biological nitrification inhibition (BNI)—is it a widespread phenomenon? Plant Soil 294: 5–18.

    CAS  Google Scholar 

  • Subbarao, G.V, Ban, T., Kishii, M., Ito, O., Samejima, H, Pearse, S.J., Hossain, A.K.M.Z., Gopalakrishnan, S., Wang, H.Y., Nakahara, K., Tsujimoto, H., & Berry, W.L. 2007b. Biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) can combat nitrification in wheat farming. Plant Soil 229: 55–64.

    Google Scholar 

  • Sudhakar, D., Fu, X., Stoger, E., Williams, S., Spence, J., Brown, D.P., Bharathi, M., Gatehouse, J.A., & Christou, P. 1998. Expression and immunolocalisation of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Res. 7: 371–378.

    CAS  PubMed  Google Scholar 

  • Tahvanainen, J., Julkumen-Tiitto, R., & Kettunen, J. 1985. Phenolic glycosides govern the food selection pattern of willow feeding beetles. Oecologia 67: 52–56.

    Google Scholar 

  • Takabayashi, J. & Dicke, M. 1996. Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1: 109–113.

    Google Scholar 

  • Tattersall, D.B., Bak, S., Jones, P.R., Olsen, C.E., Nielsen, J.K., Hansen, M.L., Hoj, P.B., & Møller, B.L. 2001 Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293: 1826–1828.

    CAS  PubMed  Google Scholar 

  • Ton, J., D’Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., & Turlings, T.C.J. 2007. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49: 16–26.

    CAS  PubMed  Google Scholar 

  • Tscharntke, T., Thiessen, S., Dolch, R., & Boland, W. 2001.Herbivory,induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem. Syst. Ecol. 29: 1025–1047.

    CAS  Google Scholar 

  • Turlings, T.C.J. & Ton, J. 2006. Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin. Plant Biol. 9: 421–427.

    PubMed  Google Scholar 

  • Turlings, T.C.J. & Wäckers, F.L. 2004. Recruitment of predators and parasitoids by herbivore-damaged plants. In: Advances in insect chemical ecology, R.T. Cardé & J. Millar (eds). Cambridge University Press, Cambridge, pp. 21–75.

    Google Scholar 

  • Twigg, L.E. & King, D.R. 1991. The impact of fluoroacetate-bearing vegetation on native Australian fauna: a review. Oikos 61: 412–430.

    CAS  Google Scholar 

  • Twigg, L.E., Wright, G.R., & Potts, M.D. 1999. Fluoroacetate content of Gastrolobium brevipes in central Australia. Aust. J. Bot. 47: 877–880.

    CAS  Google Scholar 

  • Twigg, L.E., Martin, G.R., & Lowe, T.J. 2002. Evidence of pesticide resistance in medium-sized mammalian pests: a case study with 1080 poison and Australian rabbits. J. Appl. Ecol. 39: 549–560.

    CAS  Google Scholar 

  • Tuomi, J., Niemela, P., Haukioja, E. & Neuvonen, S. 1984. Nutrient stress: an explanation for plant anti-herbivore responses to defoliation. Oecologia 61: 208–210.

    Google Scholar 

  • Understrup, A.G., Ravnskov, S., Hansen, H.C.B., & Fomsgaard, I.S. 2005. Biotransformation of 2-benzoxazolinone to 2-amino-(3H)-phenoxazin-3-one and 2-acetylamino-(3H)-phenoxazin-3-one in soil. J. Chem. Ecol. 31:1205–1222.

    CAS  PubMed  Google Scholar 

  • Van Loon, J.J.A, Blaakmeer, A., Griepink, F.C., van Beek, T.A., Schoonhoven, L.M. & De Groot, A. 1992. Leaf surface compound from Brassica oleracea (Cruciferae) induces oviposition by Pieris brassicae (Lepidoptera: Pieridae). Chemoecology 3: 39–44.

    Google Scholar 

  • Van Tol, R.W.H.M., Van der Sommen, A.T.C., Boff, M.I.C., Van Bezooijen, J., Sabelis, M.W., & Smits, P.H. 2001. Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 4: 292–294.

    Google Scholar 

  • Voelckel, C. & Baldwin, I.T. 2004. Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J. 38: 650–663.

    CAS  PubMed  Google Scholar 

  • Vrieling, K. & Wijk C. A. M. 1994. Cost assessment of the production of pyrrolizidine alkaloids in ragwort (Senecio jacobaea L.). Oecologia 97: 541–546.

    Google Scholar 

  • Waring, R.H. & Pitman, G.B. 1985. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 66: 889–897.

    Google Scholar 

  • Waring, R.H., McDonald, A.J.S., Larsson, S., Ericsson, T., Wiren, A., Arwidsson, E., Ericsson, A., & Lohammar, T. 1985. Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia 66: 157–160.

    Google Scholar 

  • Wasternack, C. & Parthier, B. 1997. Jasmonate-signalled plant gene expression. Trends Plant Sci. 2: 302–307.

    Google Scholar 

  • Weck-Reichhart, D., Hehn, A., & Didierjean, L. 2000. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci. 5: 116–123.

    Google Scholar 

  • Weir, T., Bais, H., Stull, V., Callaway, R., Thelen, G., Ridenour, W., Bhamidi, S., Stermitz, F., & Vivanco, J. 2006. Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta 223: 785–795.

    CAS  PubMed  Google Scholar 

  • Willmer, P.G. & Stone, G.N. 1997. How aggressive ant-guards assist seed-set in Acacia flowers. Nature 388: 165–167.

    CAS  Google Scholar 

  • Wright, I.J. & Cannon, K. 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol. 15: 351–359.

    Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D., & An, M. 2000a. Allelochemicals in wheat (Triticum aestivum L.): Variation of Phenolic acids in root tissues. J. Agric. Food Chem. 48: 5321–5325.

    CAS  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D. & Haig, T. 2000b. Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Aust. J. Agric. Res. 51: 937–944.

    Google Scholar 

  • Wu, A., Sun, X., Pang, Y., & Tang, K. 2002. Homozygous transgenic rice lines expressing GNA with enhanced resistance to the rice sap-sucking pest Laodelphax striatellus. Plant Breeding 121: 93–95.

    Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., An, M., & Liu, D. 2007. Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays. Plant Soil 296: 85–93.

    CAS  Google Scholar 

  • Yenesew, A., Mushibe, E.K., Induli, M., Derese, S., Midiwo, J.O., Kabaru, J.M., Heydenreich, M., Koch, A., & Peter, M.G. 2005 7a-O-methyldeguelol, a modified rotenoid with an open ring-C, from the roots of Derris trifoliata. Phytochemistry 66: 653–657.

    CAS  PubMed  Google Scholar 

  • Yu, J.Q., Shou, S.Y., Qian, Y.R., Zhu, Z.J., & Hu, W.H. 2000. Autotoxic potential of cucurbit crops. Plant Soil 223: 147–151.

    CAS  Google Scholar 

  • Ziska, L.H., Sicher Jr, R.C., George, K., & Mohan, J.E. 2007. Rising carbon dioxide, plant biology public health: potential impacts on the growth and toxicity of poison ivy (Toxicodendron radicans). Weed Sci. 55: 288–292.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (2008). Ecological Biochemistry: Allelopathy and Defense Against Herbivores. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78341-3_13

Download citation

Publish with us

Policies and ethics