Skip to main content

Transepithelial Migration by Toxoplasma

  • Chapter
Molecular Mechanisms of Parasite Invasion

Part of the book series: Subcellular Biochemistry ((SCBI,volume 47))

Abstract

A hallmark of T. gondii infections is passage of parasites across restrictive biological barriers—intestine, blood-brain barrier, blood-retina barrier and placenta—during primary infection or reactivation of chronic disease. Traversal of cellular barriers permits rapid dissemination of parasites to gain access to biologically restricted organs. This process involves active parasite motility and tighdy regulated interactions between host cell receptors and parasite adhesins that facilitate paracellular transfer. Mounting evidence also suggests that parasites use migrating leukocytes as Trojan horses to disseminate in the organism while avoiding immune attack. Thus, the interaction of Toxoplasma with biological barriers is a determinant factor of human toxoplasmosis. The elucidation of determinants involved in the process of migration may reveal virulence factors and novel therapeutic targets to combat disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerr JR. Cell adhesion molecules in the pathogenesis of and host defence against microbial infection. Mol Pathol 1999; 52:220–230.

    Article  PubMed  CAS  Google Scholar 

  2. Huang SH, Jong AY. Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier. Cell Microbiol 2001; 3:277–287.

    Article  PubMed  CAS  Google Scholar 

  3. Meresse S et al. Controlling the maturation of pathogen-containing vacuoles: A matter of life and death. Nat Cell Biol 1999; 1:E183–188.

    Article  PubMed  CAS  Google Scholar 

  4. Koi H et al. The mechanisms of placental viral infection. Ann NY Acad Sci 2001; 943:148–156.

    Article  PubMed  CAS  Google Scholar 

  5. Cossart P, Bierne H. The use of host cell machinery in the pathogenesis of Listeria monocytogenes. Curr Opin Immunol 2001; 13:96–103.

    Article  PubMed  CAS  Google Scholar 

  6. Dobrowolski JM, Sibley LD. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 1996; 84:933–939.

    Article  PubMed  CAS  Google Scholar 

  7. Desmonts G, Couvreur J. Congenital toxoplasmosis: A prospective study of 378 pregnancies. N Engl J Med 1974; 290:1110–1116.

    Article  PubMed  CAS  Google Scholar 

  8. Luft BJ et al. Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. N Engl J Med 1993; 329:995–1000.

    Article  PubMed  CAS  Google Scholar 

  9. Roberts F, McLeod R. Pathogenesis of toxoplasmic retinochoroiditis. Parasitology Today 1999; 15:51–57.

    Article  PubMed  CAS  Google Scholar 

  10. Dubey JP. Advances in the life cycle of Toxoplasma gondii. Int J Parasitol 1998; 28:1019–1024.

    Article  PubMed  CAS  Google Scholar 

  11. Dubey JP. Comparative infectivity of Toxoplasma gondii bradyzoites in rats and mice. J Parasitol 1998; 84:1279–1282.

    Article  PubMed  CAS  Google Scholar 

  12. Yap GS, Sher A. The use of germ line-mutated mice in understanding host-pathogen interactions. Cell Microbiol 2002; 4:627–634.

    Article  PubMed  CAS  Google Scholar 

  13. Meissner M et al. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 2002; 298:837–840.

    Article  PubMed  CAS  Google Scholar 

  14. Khan IA et al. Mice lacking the chemokine receptor CCR1 show increased susceptibility to Toxoplasma gondii infection. J Immunol 2001; 166:1930–1937.

    PubMed  CAS  Google Scholar 

  15. Robben PM et al. Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J Exp Med 2005; 201:1761–1769.

    Article  PubMed  CAS  Google Scholar 

  16. Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002; 4:235–260.

    Article  PubMed  CAS  Google Scholar 

  17. Doyle TC et al. In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol 2004; 6:303–317.

    Article  PubMed  CAS  Google Scholar 

  18. Hitziger N et al. Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1 receptor signaling for host resistance assessed by in vivo bioluminescence imaging. Cell Microbiol 2005; 7:837–848.

    Article  PubMed  CAS  Google Scholar 

  19. Lambert H et al. Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination. Cell Microbiol 2006; 8(10):1611–1623.

    Article  PubMed  CAS  Google Scholar 

  20. Sibley LD, Boothroyd JC. Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature (Lond.) 1992; 359:82–85.

    Article  PubMed  CAS  Google Scholar 

  21. Howe DK, Sibley LD. Toxoplasma gondii comprises three clonal lineages: Correlation of parasite genotype with human disease. Journal Infectious Diseases 1995; 172:1561–1566.

    CAS  Google Scholar 

  22. Fuentes I et al. Genotypic characterization of Toxoplasma gondii strains associated with human toxoplasmosis in Spain: Direct analysis from clinical samples. J Clin Microbiol 2001; 39:1566–1570.

    Article  PubMed  CAS  Google Scholar 

  23. Khan A et al. Genotyping of toxoplasma gondii strains from immunocompromised patients reveals high prevalence of Type I strains. J Clin Microbiol 2005; 43:5881–5887.

    Article  PubMed  CAS  Google Scholar 

  24. Gallego C et al. Direct genotyping of animal and human isolates of Toxoplasma gondii from Colombia (South America). Acta Trop 2005; 97:161–162.

    Article  PubMed  CAS  Google Scholar 

  25. Mordue DG et al. Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. J Immunol 2001; 167:4574–4584.

    PubMed  CAS  Google Scholar 

  26. Gavrilescu LC, Denkers EY. IFN-γ overproduction and high level apoptosis are associated with high but not low virulence Toxoplasma gondii infection. J Immunol 2001; 167:902–909.

    PubMed  CAS  Google Scholar 

  27. Barragan A, Sibley LD. Transepithelial migration of Toxoplasma gondii is linked to parasite motility and virulence. J Exp Med 2002; 195:1625–1633.

    Article  PubMed  CAS  Google Scholar 

  28. Su C et al. Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii. Proc Natl Acad Sci USA 2002; 99:10753–10758.

    Article  PubMed  CAS  Google Scholar 

  29. Morisaki JH et al. Invasion of Toxoplasma gondii occurs by active penetration of the host cell. J Cell Sci 1995; 108:2457–2464.

    PubMed  CAS  Google Scholar 

  30. Russell DG, Sinden RE. The role of the cytoskeleton in the motility of coccidian sporozoites. J Cell Sci 1981; 50:345–359.

    PubMed  CAS  Google Scholar 

  31. Vanderberg JP. Studies on the motility of Plasmodium sporozoites. Journal of Protozoology 1974; 21:527–537.

    PubMed  CAS  Google Scholar 

  32. Wetzel DM et al. Gliding motility leads to active cellular invasion by Cryptosporidium parvum sporozoites. Infect Immun 2005; 73:5379–5387.

    Article  PubMed  CAS  Google Scholar 

  33. Wetzel DM et al. Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell 2003; 14:396–406.

    Article  PubMed  CAS  Google Scholar 

  34. Herm-Gotz A et al. Toxoplasma gondii myosin A and its light chain: A fast, single-headed, plus-end-directed motor. EMBO J 2002; 21:2149–2158.

    Article  PubMed  CAS  Google Scholar 

  35. Morrissette NS, Sibley LD. Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev 2002; 66:21–38.

    Article  PubMed  Google Scholar 

  36. Jewett TJ, Sibley LD. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell 2003; 11:885–894.

    Article  PubMed  CAS  Google Scholar 

  37. Opitz C, Soldati D. ‘The glideosome’: A dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 2002; 45:597–604

    Article  PubMed  CAS  Google Scholar 

  38. Barragan A, Brossier F, Sibley LD. Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 2005; 7:561–568.

    Article  PubMed  CAS  Google Scholar 

  39. Mota MM et al. Migration of Plasmodium sporozoites through cells before infection. Science 2001; 291:141–144.

    Article  PubMed  CAS  Google Scholar 

  40. Mota MM et al. Migration through host cells activates Plasmodium sporozoites for infection. Nat Med 2002; 8:1318–1322.

    Article  PubMed  CAS  Google Scholar 

  41. Carrolo M et al. Hepatocyte growth factor and its receptor are required for malaria infection. Nat Med 2003; 9:1363–1369.

    Article  PubMed  CAS  Google Scholar 

  42. Feng D et al. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 1998; 187:903–915.

    Article  PubMed  CAS  Google Scholar 

  43. Barragan A, Sibley LD. Migration of Toxoplasma gondii across biological barriers. Trends Microbiol 2003; 11:426–430.

    Article  PubMed  CAS  Google Scholar 

  44. Tsukita S et al. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2001; 2:285–293.

    Article  PubMed  CAS  Google Scholar 

  45. Sibley LD. Intracellular parasite invasion strategies. Science 2004; 304:248–253.

    Article  PubMed  CAS  Google Scholar 

  46. Baum J et al. A conserved molecular motor drives cell invasion and gliding motility across malaria lifecycle stages and other apicomplexan parasites. J Biol Chem 2006; 281:5197–5208.

    Article  PubMed  CAS  Google Scholar 

  47. Whittaker CA, Hynes RO. Distribution and evolution of von willebrand/integrin a domains: Widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 2002; 13:3369–3387.

    Article  PubMed  CAS  Google Scholar 

  48. Kappe S et al. Conservation of a gliding motility and cell invasion machinery in Apicomplexan parasites. J Cell Biol 1999; 147:937–944.

    Article  PubMed  CAS  Google Scholar 

  49. Sultan AA et al. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell 1997; 90:511–522.

    Article  PubMed  CAS  Google Scholar 

  50. Matuschewski K et al. Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system. EMBO J 2002; 21:1597–1606.

    Article  PubMed  CAS  Google Scholar 

  51. Carruthers VB et al. The Toxoplasma adhesive protein MIC2 is proteolytically processed at multiple sites by two parasite-derived proteases. J Biol Chem 2000; 275:14346–14353.

    Article  PubMed  CAS  Google Scholar 

  52. Brossier F et al. C-terminal processing of the toxoplasma protein MIC2 is essential for invasion into host cells. J Biol Chem 2003; 278:6229–6234.

    Article  PubMed  CAS  Google Scholar 

  53. Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell 2002; 110:673–687.

    Article  PubMed  CAS  Google Scholar 

  54. Carruthers VB et al. Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment. Infect Immun 2000; 68:4005–4011.

    Article  PubMed  CAS  Google Scholar 

  55. Harper JM et al. Multimerization of the Toxoplasma gondii MIC2 integrin-like A-domain is required for binding to heparin and human cells. Mol Biochem Parasitol 2004; 134:201–212.

    Article  PubMed  CAS  Google Scholar 

  56. Dubey JP. Bradyzoite-induced murine toxoplasmosis: Stage conversion pathogenesis, and tissue cyst formation in mice fed bradyzoites of different strains of Toxoplasma gondii. J Eukaryot Microbiol 1997; 44:592–602.

    Article  PubMed  CAS  Google Scholar 

  57. Reiter-Owona I et al. Is stage conversion the initiating event for reactivation of Toxoplasma gondii in brain tissue of AIDS patients? J Parasitol 2000; 86:531–536.

    PubMed  CAS  Google Scholar 

  58. Sher A et al. Induction and regulation of host cell-mediated immunity by Toxoplasma gondii. CIBA Found Symp 1995; 195:95–104, (discussion 104–109).

    PubMed  CAS  Google Scholar 

  59. Ocana-Morgner C et al. Malaria blood stage suppression of liver stage immunity by dendritic cells. J Exp Med 2003; 197:143–151.

    Article  PubMed  CAS  Google Scholar 

  60. Aliberti J et al. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat Immunol 2003; 4:485–490.

    Article  PubMed  CAS  Google Scholar 

  61. Yap G et al. Cutting edge: IL-12 is required for the maintenance of IFN-γ production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J Immunol 2000; 165:628–631.

    PubMed  CAS  Google Scholar 

  62. Pfefferkorn ER. Interferon-γ blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host to degrade tryptophan. Proc Natl Acad Sci USA 1984; 81:908–912.

    Article  PubMed  CAS  Google Scholar 

  63. Bohne W et al. Induction of bradyzoite-specific Toxoplasma gondii antigens in gamma interferon-treated mouse macrophages. Infect Immun 1993; 61:1141–1145.

    PubMed  CAS  Google Scholar 

  64. Del Rio L et al. CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection. J Immunol 2001; 167:6503–6509.

    PubMed  Google Scholar 

  65. Bliss SK et al. Rapid recruitment of neutrophils containing prestored IL-12 during microbial infection. J Immunol 2000; 165:4515–4521.

    PubMed  CAS  Google Scholar 

  66. Bennouna S et al. Cross-talk in the innate immune system: Neutrophils instruct recruitment and activation of dendritic cells during microbial infection. J Immunol 2003; 171:6052–6058.

    PubMed  CAS  Google Scholar 

  67. Aliberti J et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8-α dendritic cells. Nature Immunology 2000; 1:83–87.

    Article  PubMed  CAS  Google Scholar 

  68. Scanga CA et al. Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J Immunol 2002; 168:5997–6001.

    PubMed  CAS  Google Scholar 

  69. Gazzinelli RT et al. Role of the Toll/interleukin-1 receptor signaling pathway in host resistance and pathogenesis during infection with protozoan parasites. Immunol Rev 2004; 201:9–25.

    Article  PubMed  CAS  Google Scholar 

  70. Mun HS et al. TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection. Int Immunol 2003; 15:1081–1087.

    Article  PubMed  CAS  Google Scholar 

  71. Yarovinsky F et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 2005; 308:1626–1629.

    Article  PubMed  CAS  Google Scholar 

  72. Luangsay S et al. CCR5 mediates specific migration of Toxoplasma gondii-primed CD8 lymphocytes to inflammatory intestinal epithelial cells. Gastroenterology 2003; 125:491–500.

    Article  PubMed  Google Scholar 

  73. Egan CE et al. A Requirement for the V{gamma}1+ subset of peripheral {gamma}{delta} T cells in the control of the systemic growth of toxoplasma gondii and infection-induced pathology. J Immunol 2005; 175:8191–8199.

    PubMed  CAS  Google Scholar 

  74. Suzuki Y et al. Interferon-γ: The major mediator of resistance against Toxoplasma gondii. Science 1988; 240:516–518.

    Article  PubMed  CAS  Google Scholar 

  75. Bliss SK et al. Neutrophil depletion during Toxoplasma gondii infection leads to impaired immunity and lethal systemic pathology. Infect Immun 2001; 69:4898–4905.

    Article  PubMed  CAS  Google Scholar 

  76. Channon JY et al. Differential infectivity and division of Toxoplasma gondii in human peripheral blood leukocytes. Infect Immun 2000; 68:4822–4826.

    Article  PubMed  CAS  Google Scholar 

  77. Dubey JP et al. Oocyst-induced murine toxoplasmosis: Life cycle, pathogenicity, and stage conversion in mice fed Toxoplasma gondii oocysts. J Parasitol 1997; 83:870–882.

    Article  PubMed  CAS  Google Scholar 

  78. Steinman RM. Some interfaces of dendritic cell biology. APMIS 2003; 111:675–697.

    Article  PubMed  CAS  Google Scholar 

  79. Fischer HG et al. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 2000; 164:4826–4834.

    PubMed  CAS  Google Scholar 

  80. Suzuki Y et al. Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int J Parasitol 2005; 35:83–90.

    Article  PubMed  CAS  Google Scholar 

  81. Courret N et al. CD11c-and CD lib-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 2006; 107:309–316.

    Article  PubMed  CAS  Google Scholar 

  82. Wei S et al. Toxoplasma gondii-infected human myeloid dendritic cells induce T-lymphocyte dysfunction and contact-dependent apoptosis. Infect Immun 2002; 70:1750–1760.

    Article  PubMed  CAS  Google Scholar 

  83. McKee AS et al. Functional inactivation of immature dendritic cells by the intracellular parasite Toxoplasma gondii. J Immunol 2004; 173:2632–2640.

    PubMed  CAS  Google Scholar 

  84. Butcher BA et al. Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NF-κB. J Immunol 2001; 167:2193–2201.

    PubMed  CAS  Google Scholar 

  85. Shapira S et al. Suppression of NF-κB activation by infection with Toxoplasma gondii. J Infect Dis 2002; 185(Suppl 1):S66–72.

    Article  PubMed  CAS  Google Scholar 

  86. Luder CG, Gross U. Apoptosis and its modulation during infection with Toxoplasma gondii: Molecular mechanisms and role in pathogenesis. Curr Top Microbiol Immunol 2005; 289:219–237.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Barragan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Barragan, A., Hitziger, N. (2008). Transepithelial Migration by Toxoplasma . In: Burleigh, B.A., Soldati-Favre, D. (eds) Molecular Mechanisms of Parasite Invasion. Subcellular Biochemistry, vol 47. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78267-6_16

Download citation

Publish with us

Policies and ethics