Skip to main content

Anthocyanin Function in Vegetative Organs

  • Chapter
  • First Online:
Anthocyanins

Abstract

Possible functions of anthocyanins in leaves, stems, roots and other vegetative organs have long attracted scientific debate. Key functional hypotheses include: (i) protection of chloroplasts from the adverse effects of excess light; (ii) attenuation of UV-B radiation; and (iii) antioxidant activity. However, recent data indicate that the degree to which each of these processes is affected by anthocyanins varies greatly across plant species. Indeed, none of the hypotheses adequately explains variation in spatial and temporal patterns of anthocyanin production. We suggest instead that anthocyanins may have a more indirect role, as modulators of reactive oxygen signalling cascades involved in plant growth and development, responses to stress, and gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adir, N., Zer, H., Scholat, S. and Ohad, I. (2003) Photoinhibition – a historical review. Photosynth. Res. 76, 343–370.

    PubMed  CAS  Google Scholar 

  • Agati, G., Matteini, P., Goti, A. and Tattini, M. (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 174, 77–89.

    PubMed  CAS  Google Scholar 

  • Ã…lenius, C.M., Vogelmann, T.C. and Bornman, J.F. (1995) A three-dimensional representation of the relationship between penetration of U.V.-B radiation and U.V.-screening pigments in leaves of Brassica napus. New Phytol. 131, 297–302.

    Google Scholar 

  • Allan, A.C. and Fluhr, R. (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9, 1559–1572.

    PubMed  CAS  Google Scholar 

  • Alscher, R.G., Donahue, J.L. and Cramer, C.L. (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant. 100, 224–233.

    CAS  Google Scholar 

  • Anderson, M.D., Prasad, T.K. and Stewart, C.R. (1995) Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109, 1247–1257.

    PubMed  CAS  Google Scholar 

  • Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399.

    PubMed  CAS  Google Scholar 

  • Asada, K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601–639.

    PubMed  CAS  Google Scholar 

  • Asada, K. (2000) The water-water cycle as alternative photon and electron sinks. Phil. Trans. R. Soc. Lond. B 355, 1419–1431.

    CAS  Google Scholar 

  • Bowler, C. and Fluhr, R. (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 5, 241–246.

    PubMed  CAS  Google Scholar 

  • Bowler, C., van Montagu, M. and Inzé, D. (1992) Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83–116.

    CAS  Google Scholar 

  • Brown, J.E., Khodr, H., Hider, R.C. and Rice-Evans, C.A. (1998) Structural dependence of flavonoid interactions with Cu2 + ions: implications for their antioxidant properties. Biochem. J. 330, 1173–1178.

    PubMed  CAS  Google Scholar 

  • Buchholz, G., Elmann, B. and Wellmann, E. (1995) Ultraviolet light inhibition of phytochrome-induced flavonoid biosynthesis and DNA photolyase formation in mustard cotyledons (Sinapis alba L.). Plant Physiol. 108, 227–234.

    PubMed  CAS  Google Scholar 

  • Burger, J. and Edwards, G. (1996) Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf Coleus varieties. Plant Cell Physiol. 37, 395–399.

    CAS  Google Scholar 

  • Cai, Z.-Q., Slot, M. and Fan, Z.-X. (2005) Leaf development and photosynthetic properties of three tropical tree species with delayed greening. Photosynthetica 43, 91–98.

    CAS  Google Scholar 

  • Caldwell, M.M., Robberecht, R. and Flint, S.D. (1983) Internal filters: prospects for UV-acclimation in higher plants. Physiol. Plant. 58, 445–450.

    CAS  Google Scholar 

  • Casano, L.M., Gómez, L.D., Lascano, H.R., González, C.A. and Trippi, V.S. (1997) Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol. 38, 433–440.

    PubMed  CAS  Google Scholar 

  • Chalker-Scott, L. (1999) Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70, 1–9.

    CAS  Google Scholar 

  • Chalker-Scott, L. (2002) Do anthocyanins function as osmoregulators in leaf tissues? Adv. Bot. Res. 37, 103–127.

    CAS  Google Scholar 

  • Choinski, J.S. Jr., Ralph, P. and Eamus, D. (2003) Changes in photosynthesis during leaf expansion in Corymbia gummifera. Aust. J. Bot. 51, 111–118.

    Google Scholar 

  • Close, D.C. and Beadle, C.L. (2003) The ecophysiology of foliar anthocyanin. Bot. Rev. 69, 149–161.

    Google Scholar 

  • Corpas, F.J., Barroso, J.B. and del Río, L.A. (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 6, 145–150.

    PubMed  CAS  Google Scholar 

  • Couée, I., Sulmon, C., Gouesbet, G. and El Amrani, A. (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 57, 449–459.

    PubMed  Google Scholar 

  • Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D. and Van Breusegem, F. (2000) Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57, 779–795.

    PubMed  CAS  Google Scholar 

  • Day, T.A., Vogelmann, T.C. and DeLucia, E.H. (1992) Are some plant life forms more effective than others in screening out ultraviolet-B radiation? Oecologia 92, 513–519.

    Google Scholar 

  • Demmig-Adams, B. and Adams III, W.W. (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol. 172, 11–21.

    PubMed  CAS  Google Scholar 

  • Dröge, W. (2002) Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.

    PubMed  Google Scholar 

  • Feild, T.S., Lee, D.W. and Holbrook, N.M. (2001) Why leaves turn red in Autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol. 127, 566–574.

    PubMed  CAS  Google Scholar 

  • Foyer, C.H. and Noctor, G. (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28, 1056–1071.

    CAS  Google Scholar 

  • Foyer, C.H., Lelandais, M. and Kunert, K.J. (1994) Photooxidative stress in plants. Physiol. Plant. 92, 696–717.

    CAS  Google Scholar 

  • Fry, S.C. (1998) Oxidative scission in plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem. J. 332, 507–515.

    PubMed  CAS  Google Scholar 

  • Genty, B., Briantais, J.-M. and Baker, N.R. (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92.

    CAS  Google Scholar 

  • Gibson, S. (2005) Control of plant development and gene expression by sugar signaling. Curr. Opin. Plant Biol. 8, 93–102.

    PubMed  CAS  Google Scholar 

  • Gitelson, A.A., Merzylak, M.N. and Chivkunova, O.B. (2001) Optical properties and non-destructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 74, 38–45.

    PubMed  CAS  Google Scholar 

  • Giusti, M., Rodriguez-Saona, L. and Wrolstad, R. (1999) Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J. Agric. Food Chem. 47, 4631–4637.

    PubMed  CAS  Google Scholar 

  • Gorton, H. and Vogelmann, T.C. (1996) Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol. 112, 879–888.

    PubMed  CAS  Google Scholar 

  • Gould, K.S. (2003) Free radicals, oxidative stress and antioxidants. In: Thomas, B., Murphy, D.J. and Murray, B.G. (Eds), Encyclopedia of Applied Plant Sciences. Elsevier, Amsterdam, pp. 9–16.

    Google Scholar 

  • Gould, K.S. (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 2004, 314–320.

    PubMed  Google Scholar 

  • Gould, K.S. and Lister, C. (2005) Flavonoid functions in plants. In: Andersen, Ø.M. and Markham, K.R. (Eds), Flavonoids: Chemistry, Biochemistry, and Applications. CRC Press, Boca Raton, pp. 397–441.

    Google Scholar 

  • Gould, K.S. and Quinn, B.D. (1999) Do anthocyanins protect leaves of New Zealand native species from UV-B? New Zeal. J. Bot. 37, 175–178.

    Google Scholar 

  • Gould, K.S., Kuhn, D.N., Lee, D.W. and Oberbauer, S.F. (1995) Why leaves are sometimes red. Nature 378, 241–242.

    CAS  Google Scholar 

  • Gould, K.S., Markham, K.R., Smith, R.G. and Goris, J.J. (2000) Functional role of anthocyanins in the leaves of Quintinia serrata A Cunn. J. Exp. Bot. 51, 1107–1115.

    PubMed  CAS  Google Scholar 

  • Gould, K.S., McKelvie, J. and Markham, K.R. (2002a) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ. 25, 1261–1269.

    CAS  Google Scholar 

  • Gould, K.S., Neill, S.O. and Vogelmann, T.C. (2002b) A unified explanation for anthocyanins in leaves? Adv. Bot. Res. 37, 167–192.

    CAS  Google Scholar 

  • Gould, K.S., Vogelmann, T.C., Han, T. and Clearwater, M.J. (2002c) Profiles of photosynthesis of red and green leaves of Quintinia serrata. Physiol. Plant. 116, 127–133.

    CAS  Google Scholar 

  • Grant, J.J. and Loake, G.J. (2000) Role of reactive oxygen intermediates and cognate redox signalling in disease resistance. Plant Physiol. 124, 21–29.

    PubMed  CAS  Google Scholar 

  • Hada, H., Hidema, J., Maekawa, M. and Kumagai, T. (2003) Higher amounts of anthocyanins and UV-absorbing compounds effectively lowered CPD photorepair in purple rice (Oryza sativa L.). Plant Cell Environ. 26, 1691–1701.

    CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. (1999) Free Radicals in Biology and Medicine. Oxford University Press, Oxford.

    Google Scholar 

  • Hara, M., Oki, K., Hoshino, K. and Kuboi, T. (2003) Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl. Plant Sci. 164, 259–265.

    CAS  Google Scholar 

  • Havaux, M. and Kloppstech, K. (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213, 953–966.

    CAS  Google Scholar 

  • Hoch, W.A., Zeldin, E.L. and McCown, B.H. (2001) Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol. 21, 1–8.

    PubMed  CAS  Google Scholar 

  • Hoch, W.A., Singaas, E.L. and McCown, B.H. (2003) Resorption protection. Anthocyanins facilitate nutrient recovery in Autumn by shielding leaves from potentially damaging light levels. Plant Physiol. 133, 1–10.

    Google Scholar 

  • Hooijmaijers, C.A.M. and Gould, K.S. (2007) Photoprotective pigments in red and green gametophytes of two New Zealand liverworts. New Zeal. J. Bot. 45, 451–461.

    Google Scholar 

  • Hoque, E. and Remus, G. (1999). Natural UV-screening mechanisms of Norway spruce (Picea abies [L.] Karst.) needles. Photochem. Photobiol. 69, 177–192.

    CAS  Google Scholar 

  • Hughes, N.M. and Smith, W.K. (2007) Attenuation of incident light in Galax urceolata (Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection. Am. J. Bot. 94, 784–790.

    CAS  Google Scholar 

  • Hughes, N.M., Neufeld, H.S. and Burkey, K.O. (2005) Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. New Phytol. 168, 575–587.

    PubMed  CAS  Google Scholar 

  • Hughes, N.M., Morley, C.B. and Smith, W.K. (2007) Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species. New Phytol. 175, 675–685.

    PubMed  CAS  Google Scholar 

  • Jahnke, L.S., Hull, M.R. and Long, S.P. (1991) Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. Plant Cell Environ. 14, 97–104.

    CAS  Google Scholar 

  • Jordan, B.R., James, P., Strid, Ã…. and Anthony, R. (1994) The effect of ultraviolet-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B-induced changes are gene-specific and dependent upon the developmental stage. Plant Cell Environ. 17, 45–54.

    CAS  Google Scholar 

  • Karageorgou, P. and Manetas, Y. (2006) The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiol. 26, 613–621.

    PubMed  CAS  Google Scholar 

  • Kato, M. and Shimizu, S. (1985) Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol. 26, 1291–1301.

    CAS  Google Scholar 

  • Kawano, T. (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 21, 829–837.

    PubMed  CAS  Google Scholar 

  • Koostra, A. (1994) Protection from UV-B induced DNA damage by flavonoids. Plant Mol. Biol. 26, 771–774.

    Google Scholar 

  • Krause, G.H. and Weis, E. (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 331–349.

    Google Scholar 

  • Krol, M., Gray, G.R., Hurry, V.M., Oquist, G., Malek, L. and Huner, N.P.A. (1995) Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition inPinus banksiana seedlings. Can. J. Bot. 73, 1119–1127.

    CAS  Google Scholar 

  • Kuk, Y.I., Shin, J.S., Burgos, N.R., Hwang, T.E., Han, O., Cho, B.H., Jung, S. and Guh J.O. (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci. 43, 2109–2117.

    CAS  Google Scholar 

  • Kunz, S. and Becker, H. (1995) Cell wall pigment formation of in vitro cultures of the liverwort Ricciocarpos natans. Z. Naturforsch. 50, 235–240.

    CAS  Google Scholar 

  • Kunz, S., Burkhardt, G. and Becker, H. (1994) Riccionidins A and B, anthocyanidins from the cell walls of the liverwort Ricciocarpos natans. Phytochemistry 35: 233–235.

    CAS  Google Scholar 

  • Kyparissis, A., Grammatikopoulos, G. and Manetas, Y. (2007) Leaf morphological and physiological adjustments to the spectrally selective shade imposed by anthocyanins in Prunus cerasifera. Tree Physiol. 27, 849–857.

    PubMed  CAS  Google Scholar 

  • Kytridis, V.-P. and Manetas, Y. (2006) Mesophyll versus epidermal anthocyanins as potentialin vivo antioxidants: evidence linking the putative antioxidant role to the proximity of oxy-radical source. J. Exp. Bot. 57, 2203–2210.

    PubMed  CAS  Google Scholar 

  • Laloi, C., Apel, K. and Danon A. (2004) Reactive oxygen signalling: the latest news. Curr. Opin. Plant Biol. 7, 323–328.

    PubMed  CAS  Google Scholar 

  • Lee, D.W. and Collins, T.M. (2001) Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants. Int. J. Plant Sci. 162, 1141–1153.

    CAS  Google Scholar 

  • Lee, D.W. and Gould, K.S. (2002a) Anthocyanins in leaves and other vegetative organs: an introduction. Adv. Bot. Res. 37, 2–16.

    Google Scholar 

  • Lee, D.W. and Gould, K.S. (2002b) Why leaves turn red. Am. Sci. 90, 524–531.

    Google Scholar 

  • Li, J., Ou-Lee, T.M., Raba, R., Amundson, R.G. and Last, R.L. (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5, 171–179.

    PubMed  CAS  Google Scholar 

  • Liakopoulos, G., Nikolopoulos, D., Klouvatou, A., Vekkos, K.-A., Manetas, Y. and Karabourniotis, G. (2006) The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera). Ann. Bot. 98, 257–265.

    PubMed  CAS  Google Scholar 

  • Logan, B.A., Adams III, W.W. and Demmig-Adams, B. (2007) Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Funct. Plant Biol. 3, 853–859.

    Google Scholar 

  • Long, S.P., Humphries, S. and Falkowski, P.G. (1994) Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 633–662.

    CAS  Google Scholar 

  • Mahalingam, R. and Fedoroff, N. (2003) Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol. Plant. 119, 56–68.

    CAS  Google Scholar 

  • Manetas, Y. (2006) Why some leaves are anthocyanic, and why most anthocyanic leaves are red. Flora 201, 163–177.

    Google Scholar 

  • Manetas, Y., Drinia, A. and Petropoulou, Y. (2002) High contents of anthocyanins in young leaves are correlated with low pools of xanthophyll cycle components and low risk of photoinhibition. Photosynthetica 40, 349–354.

    CAS  Google Scholar 

  • Manetas, Y., Petropoulou, Y., Psaras, G.K. and Drinia, A. (2003). Exposed red (anthocyanic) leaves of Quercus coccifera display shade characteristics. Funct. Plant Biol. 30, 265–270.

    CAS  Google Scholar 

  • Markham, K.R. (1982) Techniques of Flavonoid Identification. Academic Press, London.

    Google Scholar 

  • Maxwell, K. and Johnson, G.N. (2000) Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51, 659–668.

    PubMed  CAS  Google Scholar 

  • McClure, J.W. (1975) Physiology and functions of flavonoids. In: Harborne, J.B. (Ed.), The Flavonoids. Chapman and Hall, London, pp. 970–1055.

    Google Scholar 

  • Meiers, S., Kemény, M., Weyand, U., Gastpar, R., Von Angerer E. and Marko, D. (2001) The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J. Agric. Food Chem. 49, 958–962.

    PubMed  CAS  Google Scholar 

  • Mendez, M., Jones, D.G. and Manetas, Y. (1999) Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plant Pinguicula vulgaris. New Phytol. 144, 275–282.

    CAS  Google Scholar 

  • Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 495–410.

    Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M. and van Breusegem, F. (2004) Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490–498.

    PubMed  CAS  Google Scholar 

  • Murray, J.R. and Hackett, W.P. (1991) Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiol. 97, 343–351.

    PubMed  CAS  Google Scholar 

  • Neill, S.O. and Gould, K.S. (1999) Optical properties of leaves in relation to anthocyanin concentration and distribution. Can. J. Bot. 77, 1777–1782.

    Google Scholar 

  • Neill, S.O. and Gould, K.S. (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct. Plant Biol. 30, 865–873.

    CAS  Google Scholar 

  • Neill, S., Desikan, R. and Hancock, J. (2002a) Hydrogen peroxide signalling. Curr. Opin, Plant Biol. 5, 388–395.

    CAS  Google Scholar 

  • Neill, S.O., Gould, K.S., Kilmartin, P.A., Mitchell, K.A. and Markham, K.R. (2002b) Antioxidant activities of red versus green leaves of Elatostema rugosum. Plant Cell Environ. 25, 539–547.

    CAS  Google Scholar 

  • Neill, S.O., Gould, K.S., Kilmartin, P.A., Mitchell, K.A. and Markham, K.R. (2002c) Antioxidant capacities of green and cyanic leaves in the sun species, Quintinia serrata. Funct. Plant Biol. 29, 1437–1443.

    CAS  Google Scholar 

  • Nishio, J.N. (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ. 23, 539–548.

    CAS  Google Scholar 

  • Niyogi, K.K. (2000) Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3, 455–460.

    PubMed  CAS  Google Scholar 

  • Olsson, L.C., Veit, M. and Bornman, J.F. (1999) Epidermal transmittance and phenolic composition in leaves of atrazine-tolerant and atrazine-sensitive cultivars ofBrassica napus grown under enhanced UV-B radiation. Physiol. Plant. 107, 259–266.

    CAS  Google Scholar 

  • Pettigrew, W.T. and Vaughn, K.C. (1998) Physiological, structural, and immunological characterization of leaf and chloroplast development in cotton. Protoplasma 202, 23–37.

    Google Scholar 

  • Pfündel, E.E., Ghozlen, N.B., Meyer, S. and Cerovic, Z.G. (2007) Investigating UV screening in leaves by two different types of portable UV fluorimeters reveals in vivo screening by anthocyanins and carotenoids. Photosynth. Res. 93, 205–221.

    PubMed  Google Scholar 

  • Pietrini, F., Iannelli, M.A. and Massacci, A. (2002) Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant Cell Environ. 25, 1251–1259.

    CAS  Google Scholar 

  • Pinhero, R.G., Rao, M.V., Paliyath, G., Murr, D.P. and Fletcher, R.A. (1997) Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol. 114, 695–704.

    PubMed  CAS  Google Scholar 

  • Pitzschke, A., Forzani, C. and Hirt, H. (2006) Reactive oxygen species signaling in plants. Antioxid. Redox Signal. 8, 1757–1764.

    PubMed  CAS  Google Scholar 

  • Polle, A. (1997) Defense against photooxidative damage in plants. In: Scandalios, J.G. (Ed.), Oxidative Stress and the Molecular Biology of Antioxidant Defenses. New York, Cold Spring Harbor Laboratory Press, pp. 623–666.

    Google Scholar 

  • Polle, A. (2001) Dissecting the superoxide dismutase-ascorbate peroxidase-glutathione pathway in chloroplasts by metabolic modelling. Computer simulations as a step towards flux analysis. Plant Physiol. 126, 445–462.

    PubMed  CAS  Google Scholar 

  • Post, A. (1990) Photoprotective pigment as an adaptive strategy in the Antarctic moss Ceratodon purpureus. Polar Biol. 10, 241–245.

    Google Scholar 

  • Post, A. and Vesk, M. (1992) Photosynthesis, pigments, and chloroplast ultrastucture of an antarctic liverwort from sun-exposed and shaded sites. Can. J. Bot. 70, 2259–2264.

    Google Scholar 

  • Poustka, F., Irani, N.G., Feller, A., Lu, Y., Pourcel, L., Frame, K. and Grotewold, E. (2007) Trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol. 145, 1323–1335.

    PubMed  CAS  Google Scholar 

  • Rhoads, D., Umbach, A.L., Subbaiah C.C. and Siedow J.N. (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 141, 357–366.

    PubMed  CAS  Google Scholar 

  • Rice-Evans, C.A., Miller, N. and Paganga, G. (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol. Med. 20, 933–956.

    CAS  Google Scholar 

  • Rice-Evans, C.A., Miller, N. and Paganga, G. (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152–159.

    Google Scholar 

  • Rizhsky, L., Liang, H.J. and Mittler, R. (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J. Biol. Chem. 278, 38921–38925.

    PubMed  CAS  Google Scholar 

  • Rodríguez, A.A., Grunberg, K.A. and Taleisnik, E.L. (2002). Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol. 129, 1627–1632.

    PubMed  Google Scholar 

  • Roitsch, T. (1999) Source-sink regulation by sugar and stress. Curr. Opin. Plant Biol. 2, 198–206.

    PubMed  CAS  Google Scholar 

  • Ryan, K.G. and Hunt, J.E. (2005) The effects of UVB radiation on temperate southern hemisphere forests. Environ. Pollut. 137, 415–427.

    PubMed  CAS  Google Scholar 

  • Scebba, F., Sebustiani, L. and Vitagliano, C. (1999) Protective enzymes against activated oxygen species in wheat (Triticum aestivum L.) seedlings: responses to cold acclimation. J. Plant Physiol. 155, 762–768.

    CAS  Google Scholar 

  • Å esták, Z. and Å iffel, P. (1997) Leaf-age related differences in chlorophyll fluorescence. Photosynthetica 33, 347–369.

    Google Scholar 

  • Singh, A., Selvi, M. and Sharma, R. (1999) Sunlight-induced anthocyanin pigmentation in maize vegetative tissues. J. Exp. Bot. 50, 1619–1625.

    CAS  Google Scholar 

  • Solfanelli, C., Poggi, A., Loreii, E., Alpi, A. and Perata, P. (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140, 637–646.

    PubMed  CAS  Google Scholar 

  • Solovchenko, A. and Merzlyak, M. (2003) Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit. Photochem. Photobiol. Sci. 2, 861–866.

    PubMed  CAS  Google Scholar 

  • Steyn, W.J., Wand, S.J.E., Holcroft, D.M. and Jacobs, G. (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol. 155, 349–361.

    CAS  Google Scholar 

  • Stintzing, F.C. and Carle, F. (2005) Functional properties of anthocyanins and betalains in plants, food and human nutrition. Trends Food Sci. Technol. 15, 19–38.

    Google Scholar 

  • Streb, P.F., Feierabend, J. and Bligney, R. (1997) Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ. 20, 1030–1040.

    CAS  Google Scholar 

  • Sun, J., Nishio, J.N. and Vogelmann, T.C. (1998) Green light drives CO2 fixation deep within leaves. Plant Cell Environ. 39, 1020–1026.

    CAS  Google Scholar 

  • Takahama, U. (2004) Oxidation of vacuolar and apoplastic phenolic substrates by peroxidases: physiological significance of the oxidation reactions. Phytochem. Rev. 3, 207–219.

    CAS  Google Scholar 

  • Takahashi, A., Takeda, K. and Ohnishi, T. (1991) Light-induced anthocyanin reduces the extent of damge to DNA in UV-irradiated Centaurea cyanus cells in culture. Plant Cell Physiol. 32, 541–547.

    CAS  Google Scholar 

  • Tanyolaç, D., Ekmekçi, Y. and Ãœnalan, Åž. (2007) Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67, 89–98.

    PubMed  Google Scholar 

  • van Acker, S.A.B.E., van den Berg, D.-J., Tromp, M.N.J.L., Griffioen, D.H., van Bennekom, W.P., van Der Vijgh, W.J.F. and Bast, A. (1996) Structural aspects of antioxidant activity of flavonoids. Free Radical Biol. Med. 20, 331–342.

    Google Scholar 

  • van den Berg, A. and Perkins, T.D. (2007) Contribution of anthocyanins to the antioxidant capacity of juvenile and senescing sugar maple (Acer saccharum) leaves. Funct. Plant Biol. 34, 714–719.

    Google Scholar 

  • Vranová, E., Inzé, D. and van Breusegem, F. (2002) Signal transduction during oxidative stress. J. Exp. Bot. 53, 1227–1236.

    PubMed  Google Scholar 

  • Wagner, D., Przybyla, D., op den Camp, R., Kim, C., Landgraf, F., Pyo Lee, K., Würsch, M., Laloi, C., Nater, M., Hideg, E. and Apel, K. (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306, 1183–1185.

    PubMed  CAS  Google Scholar 

  • Wang, H., Cao, G. and Prior, R.L. (1997) Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45, 304–309.

    CAS  Google Scholar 

  • Wheldale, M. (1916) The Anthocyanin Pigments of Plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wise, R.R. (1995) Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth. Res. 45, 79–97.

    CAS  Google Scholar 

  • Woodall, G.S. and Stewart, G.R. (1998) Do anthocyanins play a role in UV protection of the red juvenile leaves of Syzygium? J. Exp. Bot. 49, 1447–1450.

    CAS  Google Scholar 

  • Yamasaki, H., Sakihama, Y. and Ikehara, N. (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol. 115, 1405–1412.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Hugues B. Hatier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hatier, JH.B., Gould, K.S. (2008). Anthocyanin Function in Vegetative Organs. In: Winefield, C., Davies, K., Gould, K. (eds) Anthocyanins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77335-3_1

Download citation

Publish with us

Policies and ethics