Skip to main content

Two Alternative Binomial Option Pricing Model Approaches to Derive Black-Scholes Option Pricing Model

  • Chapter
Handbook of Quantitative Finance and Risk Management

Abstract

In this chapter, we review two famous models on binomial option pricing, Rendleman and Barter (RB 1979) and Cox et al. (CRR 1979). We show that the limiting results of the two models both lead to the celebrated Black-Scholes formula. From our detailed derivations, CRR is easy to follow if one has the advanced level knowledge in probability theory but the assumptions on the model parameters make its applications limited. On the other hand, RB model is intuitive and does not require higher level knowledge in probability theory. Nevertheless, the derivations of RB model are more complicated and tedious. For readers who are interested in the binomial option pricing model, they can compare the two different approaches and find the best one that fits their interests and is easier to follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Section 3 of this chapter is essentially drawing from the paper by Lee et al. (2004).

References

  • Amram, M. and N. Kulatilaka. 2001. Real options, Oxford University Press, USA.

    Google Scholar 

  • Banz, R. and M. Miller. 1978. “Prices for state contingent claims: some estimates and applications.” Journal of Business 51, 653–672.

    Article  Google Scholar 

  • Bartter, B. J. and R. J. Rendleman Jr. 1979. “Fee-based pricing of fixed rate bank loan commitments.” Financial Management 8.

    Google Scholar 

  • Bhattachayra, M. 1980.“Empirical properties of the Black-Scholes formula under ideal conditions.” Journal of Financial and Quantitative Analysis 15, 1081–1105.

    Article  Google Scholar 

  • Bhattacharya, R. N. and R. R. Rao. 1976. Normal approximations and asymptotic expansions, Wiley, New York.

    Google Scholar 

  • Black, F. 1972.“Capital market equilibrium with restricted borrowing.” Journal of Business 45, 444–445.

    Article  Google Scholar 

  • Black, F. and M. Scholes. 1973. “The pricing of options and corporate liabilities.” Journal of Political Economy 31, 637–659.

    Article  Google Scholar 

  • Bookstaber, R. M. 1981. Option pricing and strategies in investing, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Brennan, M. J. and E.S. Schwartz 1977.“The valuation of American put options.” Journal of Financial Economics 32, 449–462.

    Google Scholar 

  • Cox, J. C. and M. Rubinstein. 1985. Option markets, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Cox, J. C. and S. A. Ross. 1976. “The valuation of options for alternative stochastic processes.” Journal of Financial Economics 3, 145–166.

    Article  Google Scholar 

  • Cox, J. C., S. A. Ross, and M. Rubinstein. 1979. “Option pricing: a simplified approach.” Journal of Financial Economics 7, 229–263.

    Article  Google Scholar 

  • Duffie, D. and C. Huang. 1985. “Implementing Arrow Debreu equilibria by continuous trading of few long lived securities.” Econometrica 6, 1337–1356.

    Article  Google Scholar 

  • Finnerty, J. 1978. “The Chicago board options exchange and market efficiency.” Journal of Financial and Quantitative Analysis 13, 29–38.

    Article  Google Scholar 

  • Galai, D. and R. W. Masulis. 1976. “The option pricing model and the risk factor of stock.” Journal of Financial Economics 3, 53–81.

    Article  Google Scholar 

  • Geske, R. 1979. “The valuation of compound options.” Journal of Financial Economics 7, 63–81.

    Article  Google Scholar 

  • Harrison, J. M. and D. M. Kreps. 1979. “Martingales and arbitrage in multiperiod securities markets.” Journal of Economic Theory 20, 381–408.

    Article  Google Scholar 

  • Harrison, J. M. and S. R. Pliska. 1981. “Martingales and stochastic integrals in the theory of continuous trading.” Stochastic Process and Their Applications 11, 215–260.

    Article  Google Scholar 

  • Hull, J. 2005. Options, futures, and other derivatives, 6th Edition, Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Jarrow, R. and Turnbull, S. 1999. Derivatives securities, 2nd Edition, South-Western College Pub, Cincinnati, OH.

    Google Scholar 

  • Jones, E. P. 1984. “Option arbitrage and strategy with large price changes.” Journal of Financial Economics 13, 91–113.

    Article  Google Scholar 

  • Lee, C. F. 2009. Handbook of quantitative finance, and risk management, Springer, New York.

    Google Scholar 

  • Lee, C. F. and A. C. Lee. 2006. Encyclopedia of finance, Springer, New York.

    Book  Google Scholar 

  • Lee, J. C., C. F. Lee, R. S. Wang, and T. I. Lin. 2004. “On the limit properties of binomial and multinomial option pricing models: review and integration.” Advances in Quantitative Analysis of Finance and Accounting New Series, Volume 1. World Scientific: Singapore.

    Google Scholar 

  • Liaw, K. T. and R. L. Moy. 2000. The Irwin guide to stocks, bonds, futures, and options, McGraw-Hill Companies, New York.

    Google Scholar 

  • MacBeth, J. and L. Merville. 1979. “An empirical examination of the Black-Scholes call option pricing model.” The Journal of Finance 34, 1173–1186.

    Article  Google Scholar 

  • Madan, D. B. and F. Milne. 1987. The multinomial option pricing model and its limits, Department of Econometrics working papers, University of Sydney, Sydney, NSW 2066.

    Google Scholar 

  • Madan, D. B. and F. Milne. 1988a. Arrow Debreu option pricing for long-tailed return distributions, Department of Econometrics working papers, University of Sydney, Sydney, NSW 2066.

    Google Scholar 

  • Madan, D. B. and F. Milne. 1988b. Option pricing when share prices are subject to predictable jumps, Department of Econometrics working papers, University of Sydney, Sydney, NSW 2066.

    Google Scholar 

  • McDonald, R. L. 2005. Derivatives markets, 2nd Edition, Addison Wesley, Boston, MA.

    Google Scholar 

  • Merton, R. C. 1973. “The theory of rational option pricing.” Bell Journal of Economics and Management Science 4, 141–183.

    Article  Google Scholar 

  • Merton, R. C. 1976. “Option pricing when underlying stock returns are discontinuous.” Journal of Financial Economics 3, 125–144.

    Article  Google Scholar 

  • Merton, R. C. 1977. “On the pricing of contingent claims and the Modigliani-Miller theorem.” Journal of Financial Economics 5, 241–250.

    Article  Google Scholar 

  • Milne, F. and H. Shefrin. 1987. “A critical examination of limiting forms of the binomial option pricing theory.” Department of Economics, Australian National University, Canberra, ACT 2601.

    Google Scholar 

  • Øksendal, B. 2007. Stochastic differential equations: an introduction with applications, 6th Edition, Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  • Parkinson, M. 1977. “Option pricing: the American put.” Journal of Business 50, 21–36.

    Article  Google Scholar 

  • Rendleman, R. J., Jr. and B. J. Barter. 1979. “Two-state option pricing.” Journal of Finance 24, 1093–1110.

    Article  Google Scholar 

  • Rendleman, R. J., Jr. and B. J. Barter. 1980. “The pricing of options on debt securities.” Journal of Financial and Quantitative Analysis 15, 11–24.

    Article  Google Scholar 

  • Ritchken, P. 1987. Option: theory, strategy, and applications, Scott, Foresman: Glenview, IL.

    Google Scholar 

  • Rubinstein, M. 1976. “The valuation of uncertain income streams and the pricing of options.” Bell Journal of Economics and Management Science 7, 407–425.

    Article  Google Scholar 

  • Shreve, S. E. 2004a. Stochastic calculus for finance I: The binomial asset pricing model, Springer Finance, New York.

    Book  Google Scholar 

  • Shreve, S. E. 2004b. Stochastic calculus for finance II: continuous-time model, Springer Finance, New York.

    Book  Google Scholar 

  • Summa, J. F. and J. W. Lubow. 2001. Options on futures, John Wiley & Sons, New York.

    Google Scholar 

  • Trennepohl, G. 1981. “A comparison of listed option premia and Black-Scholes model prices: 1973–1979.” Journal of Financial Research 11–20.

    Google Scholar 

  • Zhang, P. G. 1998. Exotic options: a guide to second generation options, 2nd Edition, World Scientific Pub Co Inc, Singapore.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Shu-Ming Lin .

Editor information

Editors and Affiliations

Appendices

Appendix 26A The Binomial Theorem

$${(x+y)}^{n} ={\sum \nolimits}_{k=0}^{n}\left (\begin{array}{*{20}c} n\\ k\\ \end{array} \right ){x}^{k}{y}^{n-k}$$

Lindberg-Levy Central Limit Theorem

If x 1, , x n are a random sample from a probability distribution with finite mean μ and finite variance σ2 and \(\bar{x} = \left ( \frac{1} {n}\right ){\sum \nolimits}_{i=1}^{n}{x}_{i}\), then

$$\sqrt{n}(\bar{{x}}_{n} - \mu )\mathop{\longrightarrow}\limits_{}^{d}N\left [0,{\sigma}^{2}\right ].$$

Proof of Theorem 1

Since

$$\begin{array}{@{}ll} p{\left \vert \log u -\hat{\mu}\right \vert}^{3} & = p{\left \vert \log u - p\log \dfrac{u} {d} -\log d\right \vert}^{3} \\ & = p{(1 - p)}^{3}{\left \vert \log \dfrac{u} {d}\right \vert}^{3} \end{array}$$

And

$$\begin{array}{@{}ll} (1 - p){\left \vert \log d -\hat{\mu}\right \vert}^{3} & = (1 - p){\left \vert \log d - p\log \dfrac{u} {d} -\log d\right \vert}^{3} \\ & = {p}^{3}(1 - p){\left \vert \log \dfrac{u} {d}\right \vert}^{3}, \end{array}$$

we have \(p{\left \vert \log u -\hat{\mu}\right \vert}^{3} + (1 - p){\left \vert \log d -\hat{\mu}\right \vert}^{3} = p(1 - p)[{(1 - p)}^{2} - {p}^{2}]{\left \vert \log \frac{u} {d}\right \vert}^{3}\) .

Thus

$$\begin{array}{l} \dfrac{p{\left \vert \log u -\hat{\mu}\right \vert}^{3} + (1 - p){\left \vert \log d -\hat{\mu}\right \vert}^{3}} {\hat{{\sigma}}^{3}\sqrt{n}} \\ = \dfrac{p(1 - p)[{(1 - p)}^{2} - {p}^{2}]{\left \vert \log \frac{u} {d}\right \vert}^{3}} {{\left (\sqrt{p(1 - p)}\log \left (\dfrac{u} {d}\right )\right )}^{3}\sqrt{n}} \\ = \dfrac{{(1 - p)}^{2} + {p}^{2}} {\sqrt{\mathit{np} (1 - p)}} \rightarrow 0\quad \mathrm{as}\ n \rightarrow \infty \end{array}.$$

Hence the condition for the theorem to hold as stated in Equation (26.24) is satisfied.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, CF., Lin, C.SM. (2010). Two Alternative Binomial Option Pricing Model Approaches to Derive Black-Scholes Option Pricing Model. In: Lee, CF., Lee, A.C., Lee, J. (eds) Handbook of Quantitative Finance and Risk Management. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77117-5_26

Download citation

Publish with us

Policies and ethics