Skip to main content

Comparative Anatomy and Evolutionary Roles of Reelin

  • Chapter
Reelin Glycoprotein

The reelin gene maps to mouse chromosome 5 and human chromosome 7q22 (DeSilva et al., 1997; Royaux et al., 1997). The mouse reelin gene has a large size, about 450kb, principally due to the presence of some very large introns. It is composed of 65 exons, 51 of which encode the eight reelin repeats. At the 3′-terminal portion of the gene, alternative splicing involves the inclusion of a hexanucleotide AGTAAG encoding amino acids Val-Ser, which create a potential phosphorylation site. This sequence is flanked by two introns and considered a bona fide exon (exon 64) (Royaux et al., 1997). The hexanucleotide sequence is evolutionarily conserved, because it is observed in the same relative location in the turtle and lizard cDNA, while the similar sequence AATAAG is present in chick (Lambert de Rouvrait et al., 1999). An alternative, polyadenylated product corresponds to the alternative exon 63a, expressed in the embryonic mouse brain, that codes for a truncated protein lacking the C-terminal region. This alternative mRNA represents between 10 and 25% of total reelin message in the embryonic mouse brain and is most abundant in Cajal-Retzius neurons of the cerebral cortex and hippocampus and in granule cells of the cerebellum; highly similar sequences are also found in human and rat. While reelin mRNA containing the microexon 64 is the major form in the brain of mouse, rat, man, turtle, and lizard, reelin transcripts in liver and kidney lack the hexanucleotide (Lambert de Rouvrait et al., 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, H., and Meyer, G. (2003). Reelin-expressing neurons in the postnatal and adult human hippocampal formation. Hippocampus 13: 715-727.

    Article  PubMed  Google Scholar 

  • Abraham, H., Perez-Garcia, C. G., and Meyer, G. (2004). p73 and reelin in Cajal-Retzius cells of the developing human hippocampal formation. Cerebral Cortex 14:484-495.

    Article  PubMed  Google Scholar 

  • Alcantara, S., Ruiz, M., D’Arcangelo, G., Ezan, F., de Lecea, L., Curran, T., Sotelo, C., and Soriano E. (1998). Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18:7779-7799.

    PubMed  Google Scholar 

  • Bar, I., Lambert de Rouvroit, C., and Goffinet, A. M. (2000). The evolution of cortical develop-ment. An hypothesis based on the role of the reelin signaling pathway. Trends Neurosci. 23:633-638.

    Article  PubMed  Google Scholar 

  • Bar, I., Tissir, F., Lambert de Rouvroit, C., De Backer, O., and Goffinet, A. M. (2003). The gene encoding disabled-1 (DAB1), the intracellular adaptor of the reelin pathway, reveals unusual complexity in human and mouse. J. Biol. Chem. 278:5802-5812.

    Article  PubMed  Google Scholar 

  • Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., Li, W. P., Adelmann, G., Frotscher, M., Hammer, R. E., and Herz, J. (2005). Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567-579.

    Article  PubMed  Google Scholar 

  • Beffert, U., Durudas, A., Weeber, E. J., Stolt, P. C., Giehl, K. M., Sweatt, J. D., Hammer, R. E., and Herz, J. (2006). Functional dissection of reelin signaling by site-directed disruption of disabled-1 adaptor binding to apolipoprotein E receptor 2: distinct roles in development and synaptic plasticity. J. Neurosci. 26:2041-2052.

    Article  PubMed  Google Scholar 

  • Bernier, B., Bar, I., Pieau, C., Lambert de Rouvroit, C., and Goffinet, A. M. (1999). Reelin mRNA expression during embryonic brain development in the turtle Emys orbicularis. J. Comp. Neurol. 413:463-479.

    Article  PubMed  Google Scholar 

  • Bernier, B., Bar, I., D’Arcangelo, G., Curran, T., and Goffinet, A. M. (2000). Reelin mRNA expression during embryonic brain development in the chick. J. Comp. Neurol. 422:448-463.

    Article  PubMed  Google Scholar 

  • Bielle, F., Griveau, A., Narboux-Neme, N., Vigneau, S., Sigrist, M., Arber, S., Wassef, M., and Pierani, A. (2005). Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nature Neurosci. 8:1002-1012.

    Article  PubMed  Google Scholar 

  • Botella-Lopez, A., Burgaya, F., Gavin, R., Garcia-Ayllon, M. S., Gomez-Tortosa, E., Pena-Casanova, J., Urena, J. M., Del Rio, J. A., Blesa, R., Soriano, E., and Saez-Valero, J. (2006). Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 103:5573-5578.

    Article  PubMed  Google Scholar 

  • Braak, H., and Braak, E. (1992). The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci. Res. 15:6-31.

    Article  PubMed  Google Scholar 

  • Cabrera-Socorro, A., Hernandez-Acosta, N. C., Gonzalez-Gomez, M., and Meyer, G. (2007). Comparative aspects of p73 and reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human. Brain Res. 1132:59-70.

    Article  PubMed  Google Scholar 

  • Ceranik, K., Deng, J., Heimrich, B., Lubke, J., Zhao, S., Forster, E., and Frotscher, M. (1999). Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intra-cellular labelling studies. Eur. J. Neurosci. 11:4278-4290.

    Article  PubMed  Google Scholar 

  • Chen, M. L., Chen, S. Y., Huang, C. H., and Chen, C. H. (2002). Identification of a single nucle-otide polymorphism at the 5 promoter region of human reelin gene and association study with schizophrenia. Mol. Psychiatry 7:447-448.

    Article  PubMed  Google Scholar 

  • Chen, Y., Sharma, R. P., Costa, R. H., Costa, E., and Grayson, D. R. (2002). On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res. 30:2930-2939.

    Article  PubMed  Google Scholar 

  • Chen, Y., Beffert, U., Ertunc, M., Tang, T. S., Kavalali, E. T., Bezprozvanny, I., and Herz, J. (2005). Reelin modulates NMDA receptor activity in cortical neurons. J. Neurosci. 25:8209-8216.

    Article  PubMed  Google Scholar 

  • Chin, J., Massaro, C. M., Palop, J. J., Thwin, M. T., Yu, G. Q., Bien-Ly, N., Bender, A., and Mucke, L. (2007). Reelin depletion in the entorhinal cortex of human amyloid precursor protein trans-genic mice and humans with Alzheimer’s disease. J. Neurosci. 27:2727-2733.

    Article  PubMed  Google Scholar 

  • Costagli, A., Kapsimali, M., Wilson, S. W., and Mione, M. (2002). Conserved and divergent patterns of reelin expression in the zebrafish central nervous system. J. Comp. Neurol. 450:73-93.

    Article  PubMed  Google Scholar 

  • Costagli, A., Felice, B., Guffanti, A., Wilson, S. W., and Mione, M. (2006). Identification of alter-natively spliced dab1 isoforms in zebrafish. Dev.Genes Evol. 216:291-299.

    Article  PubMed  Google Scholar 

  • D’Arcangelo G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719-723.

    Article  PubMed  Google Scholar 

  • D’Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., and Curran, T. (1997). Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17:23-31.

    PubMed  Google Scholar 

  • de Bergeyck, V., Naerhuyzen, B., Goffinet, A. M., and Lambert de Rouvroit, C. (1998). A panel of monoclonal antibodies against reelin, the extracellular matrix protein defective in reeler mutant mice. J. Neurosci. Methods 82:17-24.

    Article  PubMed  Google Scholar 

  • Deguchi, K., Inoue, K., Avila, W. E., Lopez-Terrada, D., Antalffy, B. A., Quattrocchi, C. C., Sheldon, M., Mikoshiba, K., D’Arcangelo, G., and Armstrong, D. L. (2003). Reelin and disa-bled-1 expression in developing and mature human cortical neurons. J. Neuropathol. Exp. Neurol. 62:676-684.

    PubMed  Google Scholar 

  • Derer, P., and Derer, M. (1990). Cajal-Retzius cell ontogenesis and death in mouse brain visual-ized with horseradish peroxidase and electron microscopy. Neuroscience 36:839-856.

    Article  PubMed  Google Scholar 

  • Derer, P., Derer, M., and Goffinet, A. (2001). Axonal secretion of reelin by Cajal-Retzius cells: evidence from comparison of normal and Reln(Orl) mutant mice. J. Comp. Neurol. 440:136-143.

    Article  PubMed  Google Scholar 

  • DeSilva, U., D’Arcangelo, G., Braden, V. V., Chen, J., Miao, G. G., Curran, T., and Green, E. D. (1997). The human reelin gene: isolation, sequencing, and mapping on chromosome 7. Genome Res. 199:157-164.

    Article  Google Scholar 

  • Drakew, A., Frotscher, M., Deller, T., Ogawa, M., and Heimrich, B. (1998). Developmental distri-bution of a reeler gene-related antigen in the rat hippocampal formation visualized by CR-50 immunocytochemistry. Neuroscience 82:1079-1086.

    Article  PubMed  Google Scholar 

  • Eastwood, S. L., and Harrison, P. J. (2006). Cellular basis of reduced cortical reelin expression in schizophrenia. Am. J. Psychiatry 163:540-542.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., Shier, A., Sheikh, S., and Bailey, K. (1999). Defective corticogenesis and reduction in reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol. Psychiatry 4:145-154.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Earle, J. A., and McMenomy, T. (2000). Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5:654-663.

    Article  PubMed  Google Scholar 

  • Gertler, F. B., Bennett, R. L., Clark, M. J., and Hoffmann, F. M. (1989). Drosophila abl tyrosine kinase in embryonic CNS axons: a role in axonogenesis is revealed through dosage-sensitive interactions with disabled. Cell 58:103-113.

    Article  PubMed  Google Scholar 

  • Goffinet, A. M., Bar, I., Bernier, B., Trujillo, C., Raynaud, A., and Meyer, G. (1999). Reelin expression during embryonic brain development in lacertilian lizards. J. Comp. Neurol. 414:533-550.

    Article  PubMed  Google Scholar 

  • Gomez-Isla, T., Price, J. L., McKeel, D. W., Jr., Morris, J. C., Growdon, J. H., and Hyman, B. T. (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16:4491-4500.

    PubMed  Google Scholar 

  • Hevner, R. F., Neogi, T., Englund, C., Daza, R. A., and Fink, A. (2003). Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Brain Res. Dev. Brain Res. 141:39-53.

    Article  Google Scholar 

  • Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyro-sine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.

    Article  PubMed  Google Scholar 

  • Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999a). Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643-648.

    Article  PubMed  Google Scholar 

  • Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B., and Cooper, J. A. (1999b). The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glyco-proteins and to phospholipids. Mol. Cell Biol.19:5179-5188.

    PubMed  Google Scholar 

  • Jellinger, K., Braak, H., Braak, E., and Fischer, P. (1991). Alzheimer lesions in the entorhinal region and isocortex in Parkinson’s and Alzheimer’s diseases. Ann. N.Y. Acad. Sci. 640:203-209.

    PubMed  Google Scholar 

  • Jossin, Y., Ignatova, N., Hiesberger, T., Herz, J., Lambert de Rouvroit, C., and Goffinet, A. M. (2004). The central fragment of reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J. Neurosci. 24:514-521.

    Article  PubMed  Google Scholar 

  • Keshvara, L., Benhayon, D., Magdaleno, S., and Curran, T. (2001). Identification of reelin-induced sites of tyrosyl phosphorylation on disabled 1. J. Biol. Chem. 276:16008-16014.

    Article  PubMed  Google Scholar 

  • Lambert de Rouvroit, C., and Goffinet, A. M. (1998). The reeler mouse as a model of brain devel-opment. Adv. Anat. Embryol.Cell Biol. 50:1-106.

    Google Scholar 

  • Lambert de Rouvroit, C., Bernier, B., Royaux, I., de Bergeyck, V., and Goffinet, A. M. (1999). Evolutionarily conserved, alternative splicing of reelin during brain development. Exp. Neurol. 156:229-238.

    Article  PubMed  Google Scholar 

  • Luque, J. M., Morante-Oria, J., and Fairen, A. (2003). Localization of ApoER2, VLDLR and Dab1 in radial glia: groundwork for a new model of reelin action during cortical development. Brain Res. Dev. Brain Res. 140:195-203.

    Article  Google Scholar 

  • Martinez-Cerdeno, V., and Clasca, F. (2002). Reelin immunoreactivity in the adult neocortex: a com-parative study in rodents, carnivores, and non-human primates. Brain Res. Bull. 57:485-488.

    Google Scholar 

  • Martinez-Cerdeno, V., Galazo, M. J., Cavada, C., and Clasca, F. (2002). Reelin immunoreactivity in the adult primate brain: intracellular localization in projecting and local circuit neurons of the cerebral cortex, hippocampus and subcortical regions. Cerebral Cortex 12:1298-1311.

    Article  PubMed  Google Scholar 

  • Martinez-Cerdeno, V., Galazo, M. J., and Clasca, F. (2003). Reelin-immunoreactive neurons, axons, and neuropil in the adult ferret brain: evidence for axonal secretion of reelin in long axonal pathways. J. Comp. Neurol. 463:92-116.

    Article  PubMed  Google Scholar 

  • Meyer, G. (2001). Human neocortical development: the importance of embryonic and early fetal events. Neuroscientist 7:303-314.

    Article  PubMed  Google Scholar 

  • Meyer, G. (2007). Genetic control of neuronal migrations in human cortical development. Adv. Anat. Embryol. Cell Biol.189:1-111.

    Article  PubMed  Google Scholar 

  • Meyer, G., and Goffinet, A. M. (1998). Prenatal development of reelin-immunoreactive neurons in the human neocortex. J. Comp. Neurol. 397:29-40.

    Article  PubMed  Google Scholar 

  • Meyer, G., and González-Hernández, T. (1993). Developmental changes in layer I of the human neocortex during prenatal life: a DiI-tracing and AChE and NADPH-d histochemistry study. J. Comp. Neurol. 338:317-336.

    Article  PubMed  Google Scholar 

  • Meyer, G., and Wahle, P. (1999). The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur. J. Neurosci. 11:3937-3944.

    Article  PubMed  Google Scholar 

  • Meyer, G., Soria, J. M., Martinez-Galan, J. R., Martin-Clemente, B., and Fairen, A. (1998). Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397:493-518.

    Article  PubMed  Google Scholar 

  • Meyer, G., Goffinet, A. M., and Fairen, A. (1999). What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cerebral Cortex 9:765-775.

    Article  PubMed  Google Scholar 

  • Meyer, G., Pérez-García, C. G., Abraham, H., and Caput, D. (2002). Expression of p73 and reelin in the developing human cortex. J.Neurosci. 22:4973-4986.

    PubMed  Google Scholar 

  • Meyer, G., de Rouvroit, C. L., Goffinet, A. M., and Wahle, P. (2003). Disabled-1 mRNA and pro-tein expression in developing human cortex. Eur. J. Neurosci. 17:517-525.

    Article  PubMed  Google Scholar 

  • Meyer, G., Cabrera-Socorro, A., Pérez-García, C. G., Martínez-Millán, L., Walker, N., and Caput, D. (2004). Developmental roles of p73 in Cajal-Retzius cells and cortical patterning. J. Neurosci. 24:9878-9887.

    Article  PubMed  Google Scholar 

  • Nieuwenhuys, R., and Meek, J. (1990). The telencephalon of actinopterygian fishes. In Jones, G. G., and Peters, A. (Eds.), Cerebral Cortex, Vol. 8A. Plenum Press, New York, pp.31-73.

    Google Scholar 

  • Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899-912.

    Article  PubMed  Google Scholar 

  • Pappas, G. D., Kriho, V., and Pesold, C. (2001). Reelin in the extracellular matrix and dendritic spines of the cortex and hippocampus: a comparison between wild type and heterozygous reeler mice by immunoelectron microscopy. J. Neurocytol. 30:413-425.

    Article  PubMed  Google Scholar 

  • Pérez-Costas, E., Melendez-Ferro, M., Santos, Y., Anadon, R., Rodicio, M. C., and Caruncho, H. J. (2002). Reelin immunoreactivity in the larval sea lamprey brain. J. Chem. Neuroanat. 23:211-221.

    Article  PubMed  Google Scholar 

  • Pérez-Costas, E., Meléndez-Ferro, M., Pérez-García, C. G., Caruncho, H. J., and Rodicio, M. C. (2004). Reelin immunoreactivity in the adult sea lamprey brain. J. Chem. Neuroanat. 27:7-21.

    Article  PubMed  Google Scholar 

  • Pérez-García, C. G., González-Delgado, F. J., Suárez-Solá, M. L., Castro-Fuentes, R., Martín-Trujillo, J. M., Ferres-Torres, R., and Meyer, G. (2001). Reelin-immunoreactive neurons in the adult vertebrate pallium. J. Chem. Neuroanat. 21:41-51.

    Article  PubMed  Google Scholar 

  • Pérez-García, C. G., Tissir, F., Goffinet, A. M., and Meyer, G. (2004). Reelin receptors in develop-ing laminated brain structures of mouse and human. Eur. J. Neurosci. 20:2827-2832.

    Article  PubMed  Google Scholar 

  • Persico, A. M., D’Agruma, L., Maiorano, N., Totaro, A., Militerni, R., Bravaccio, C., Wassink, T. H., Schneider, C., Melmed, R., Trillo, S., Montecchi, F., Palermo, M., Pascucci, T., Puglisi-Allegra, S., Reichelt, K. L., Conciatori, M., Marino, R., Quattrocchi, C. C., Baldi, A., Zelante, L., Gasparini, P., and Keller, F. (2001). Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol. Psychiatry 6:150-159.

    Article  PubMed  Google Scholar 

  • Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A., and Caruncho, H. J. (1998). Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc. Natl. Acad. Sci. USA 95:3221-3226.

    Article  PubMed  Google Scholar 

  • Pesold, C., Liu, W. S., Guidotti, A., Costa, E., and Caruncho, H. J. (1999). Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression. Proc. Natl. Acad. Sci. USA 96:3217-3222.

    Article  PubMed  Google Scholar 

  • Pollard, K. S., Salama, S. R., Lambert, N., Lambot, M. A., Coppens, S., Pedersen, J. S., Katzman, S., King, B., Onodera, C., Siepel, A., Kern, A. D., Dehay, C., Igel, H., Ares, M., Jr., Vanderhaeghen, P., and Haussler, D. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443:167-172.

    Article  PubMed  Google Scholar 

  • Pozniak, C. D., Radinovic, S., Yang, A., McKeon, F., Kaplan, D. R., and Miller, F. D. (2000). An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289:304-306.

    Article  PubMed  Google Scholar 

  • Qiu, S., and Weeber, E. J. (2007). Reelin signaling facilitates maturation of CA1 glutamatergic synapses. J. Neurophysiol. 97:2312-2321.

    Article  PubMed  Google Scholar 

  • Ramos-Moreno, T., Galazo, M. J., Porrero, C., Martinez-Cerdeno, V., and Clasca, F. (2006). Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted reelin in the adult rat brain. Eur. J. Neurosci. 23:401-422.

    Article  PubMed  Google Scholar 

  • Rice, D. S., and Curran, T. (2001). Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24:1005-1039.

    Article  PubMed  Google Scholar 

  • Rice, D. S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998). Disabled-1 acts downstream of reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125:3719-3729.

    PubMed  Google Scholar 

  • Rice, D. S., Nusinowitz, S., Azimi, A. M., Martinez, A., Soriano, E., and Curran, T. (2001). The reelin pathway modulates the structure and function of retinal synaptic circuitry. Neuron 31:929-941.

    Article  PubMed  Google Scholar 

  • Roberts, R. C., Xu, L., Roche, J. K., and Kirkpatrick, B. (2005). Ultrastructural localization of reelin in the cortex in post-mortem human brain. J. Comp. Neurol. 482:294-308.

    Article  PubMed  Google Scholar 

  • Rodriguez, M. A., Pesold, C., Liu, W. S., Kriho, V., Guidotti, A., Pappas, G. D., and Costa, E. (2000). Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proc. Natl. Acad. Sci. USA 97:3550-3555.

    Article  PubMed  Google Scholar 

  • Rodríguez, M. A., Caruncho, H. J., Costa, E., Pesold, C., Liu, W. S., and Guidotti, A. (2002). In Patas monkey, glutamic acid decarboxylase-67 and reelin mRNA coexpression varies in a manner dependent on layers and cortical areas. J. Comp. Neurol. 451:279-288.

    Article  PubMed  Google Scholar 

  • Royaux, I., Lambert de Rouvroit, C., D’Arcangelo, G., Demirov, D., and Goffinet, A. M. (1997). Genomic organization of the mouse reelin gene. Genomics 46:240-250.

    Article  PubMed  Google Scholar 

  • Saez-Valero, J., Costell, M., Sjogren, M., Andreasen, N., Blennow, K., and Luque, J. M. (2003). Altered levels of cerebrospinal fluid reelin in frontotemporal dementia and Alzheimer’s dis-ease. J. Neurosci. Res. 72:132-136.

    Article  PubMed  Google Scholar 

  • Schiffmann, S. N., Bernier, B., and Goffinet, A. M. (1997). Reelin mRNA expression during mouse brain development. Eur. J. Neurosci. 9:1055-1071.

    Article  PubMed  Google Scholar 

  • Steward, O., and Scoville, S. A. (1976). Cells of origin of entorhinal cortical afferents to the hip-pocampus and fascia dentata of the rat. J. Comp. Neurol. 169:347-370.

    Article  PubMed  Google Scholar 

  • Tissir, F., and Goffinet, A. M. (2003). Reelin in brain development. Nature Rev. Neurosci. 4:496-505.

    Google Scholar 

  • Tissir, F., Lambert de Rouvroit, C., and Goffinet, A. M. (2002). The role of reelin in the develop-ment and evolution of the cerebral cortex. Braz. J. Med. Biol. Res. 35:1473-1484.

    Article  PubMed  Google Scholar 

  • Tissir, F., Lambert de Rouvroit, C., Sire, J. Y., Meyer, G., and Goffinet, A. M. (2003). Reelin expression during embryonic brain development in Crocodylus niloticus. J. Comp. Neurol. 457:250-262.

    Article  PubMed  Google Scholar 

  • Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.

    Article  PubMed  Google Scholar 

  • Ulinski, P. S. (1990). The cerebral cortex of reptiles. In: Jones, E. G., and Peters, A. (Eds.), Cerebral Cortex, Vol. 8A. Plenum Press, New York, pp. 139-215.

    Google Scholar 

  • van Groen, T., Miettinen, P., and Kadish, I. (2003). The entorhinal cortex of the mouse: organiza-tion of the projection to the hippocampal formation. Hippocampus 13:133-149.

    Article  PubMed  Google Scholar 

  • Van Hoesen, G. W., and Hyman, B. T. (1990). Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Prog. Brain Res. 83:445-457.

    Article  PubMed  Google Scholar 

  • Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.

    Article  PubMed  Google Scholar 

  • Willnow, T. E., Nykjaer, A., and Herz, J. (1999). Lipoprotein receptors: new roles for ancient pro-teins. Nature Cell Biol. 1:157-162.

    Article  Google Scholar 

  • Witter, M. P., and Groenewegen, H. J. (1984). Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat. J. Comp. Neurol. 224:371-385.

    Article  PubMed  Google Scholar 

  • Yang, A., Walker, N., Bronson, R., Kaghad, M., Oosterwegel, M., Bonnin, J., Vagner, C., Bonnet, H., Dikkes, P., Sharpe, A., McKeon, F., and Caput, D. (2000). p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404: 99-103.

    Article  PubMed  Google Scholar 

  • Yoshida, M., Assimacopoulos, S., Jones, K. R., and Grove, E. A. (2006). Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133:537-545.

    Article  PubMed  Google Scholar 

  • Zhao, S., Chai, X., Forster, E., and Frotscher, M. (2004). Reelin is a positional signal for the lamination of dentate granule cells. Development 131:5117-5125.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Meyer, G. (2008). Comparative Anatomy and Evolutionary Roles of Reelin. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_6

Download citation

Publish with us

Policies and ethics