Skip to main content

Reelin and Cajal-Retzius Cells

  • Chapter
Reelin Glycoprotein

Cajal-Retzius (CR) cells comprise a population of neurons found in the marginal layer of the developing cerebral cortex and hippocampus of amniotes. Their name originates from their codiscovery in the 1890s by Santiago Ramón y Cajal, who was using Golgi staining techniques on brain sections from small mammals such as rabbits (Ramón y Cajal, 1891), and by Gustaf Retzius, who referred to the cortical marginal cells he observed in human fetuses as “Cajal’s cells” (Retzius, 1893). Despite this common classification, it should be noted that the morphology of CR cells from primates versus small mammals is not homogeneous. Drawings of pri- mate marginal cells provided by Retzius and other authors (Meyer et al., 1999) indicate rather complex and variable morphologies, and Retzius even initially considered “his” CR cells as glia (König, 1978). By contrast, CR cells present in the rat marginal zone—or layer I of the more mature cortex—display fairly homogeneous aspects, so that their identification is straightforward based on three morphologic criteria: fusiform or ovoid shape; bipolarity, i.e., presence of one axon and one dendrite; and tangential orientation of the latter (Fig. 18.1). Due to their facilitated access in a widely used species, a large body of data have been collected regarding the physiologic properties of rat CR cells (Mienville, 1999). In 1995, a novel criterion for identifying these neurons emerged with the discovery of reelin, their secreted protein, which is necessary for correct cortical lamination (D’Arcangelo et al., 1995; Ogawa et al., 1995). While reelin is produced by other cells (see below), certainly the combination of morphologic and immunocytochemical criteria now should allow unambiguous identification of CR cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, H., and Meyer, G. (2003). Reelin-expressing neurons in the postnatal and adult human hippocampal formation. Hippocampus 13: 715-727.

    PubMed  CAS  Google Scholar 

  • Abraham, H., Perez-Garcia, C. G., and Meyer, G. (2004a). p73 and reelin in Cajal-Retzius cells of the developing human hippocampal formation. Cereb. Cortex 14: 484-495.

    PubMed  Google Scholar 

  • Abraham, H., Toth, Z., and Seress, L. (2004b). A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domes-tic pig. Hippocampus 14: 385-401.

    PubMed  Google Scholar 

  • Abraham, H., Tóth, Z., Bari, F., Domoki, F., and Seress, L. (2005). Novel calretinin and reelin expressing neuronal population includes Cajal-Retzius-type cells in the neocortex of adult pigs. Neuroscience 136: 217-230.

    PubMed  CAS  Google Scholar 

  • Aguiló, A., Schwartz, T.H., Kumar, V. S., Peterlin, Z. A., Tsiola, A., Soriano, E., and Yuste, R. (1999). Involvement of Cajal-Retzius neurons in spontaneous correlated activity of embryonic and postnatal layer 1 from wild-type and reeler mice. J. Neurosci. 19: 10856-10868.

    PubMed  Google Scholar 

  • Alcántara, S., Ruiz, M., D’Arcangelo, G., Ezan, F., de Lecea, L., Curran, T., Sotelo, C., and Soriano, E. (1998). Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18: 7779-7799.

    PubMed  Google Scholar 

  • Alcántara, S., Pozas, E., Ibanez, C. F., and Soriano, E. (2006). BDNF-modulated spatial organiza-tion of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the develop-ment of cortical organization. Cereb. Cortex 16: 487-499.

    PubMed  Google Scholar 

  • Alvarez-Dolado, M., Ruiz, M., Del Río, J. A., Alcántara, S., Burgaya, F., Sheldon, M., Nakajima, K., Bernal, J., Howell, B. W., Curran, T., Soriano, E., and Munoz, A. (1999). Thyroid hormone regulates reelin and dab1 expression during brain development. J. Neurosci. 19: 6979-6993.

    PubMed  CAS  Google Scholar 

  • Auroux, M. (1969). Cortex cérébral dans la cyclocéphalie (persistance des cellules de Cajal-Retzius). Arch. Anat. Histol. Embryol. 52: 43-52.

    PubMed  CAS  Google Scholar 

  • Bernier, B., Bar, I., Pieau, C., Lambert De Rouvroit, C., and Goffinet, A. M. (1999). Reelin mRNA expression during embryonic brain development in the turtle Emys orbicularis. J. Comp. Neurol. 413: 463-479.

    PubMed  CAS  Google Scholar 

  • Bernier, B., Bar, I., D’Arcangelo, G., Curran, T., and Goffinet, A. M. (2000). Reelin mRNA expression during embryonic brain development in the chick. J. Comp. Neurol. 422: 448-463.

    PubMed  CAS  Google Scholar 

  • Bielle, F., Griveau, A., Narboux-Neme, N., Vigneau, S., Sigrist, M., Arber, S., Wassef, M., and Pierani, A. (2005). Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nature Neurosci. 8: 1002-1012.

    PubMed  CAS  Google Scholar 

  • Bishop, K. M., Garel, S., Nakagawa, Y., Rubenstein, J. L., and O’Leary, D. D. (2003). Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J. Comp. Neurol. 457: 345-360.

    PubMed  CAS  Google Scholar 

  • Blanton, M. G., and Kriegstein, A. R. (1991). Morphological differentiation of distinct neuronal classes in embryonic turtle cerebral cortex. J. Comp. Neurol. 310: 558-570.

    PubMed  CAS  Google Scholar 

  • Borrell, V., and Marín, O. (2006). Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nature Neurosci. 9: 1284-1293.

    PubMed  CAS  Google Scholar 

  • Borrell, V., Ruiz, M., Del Río, J. A., and Soriano, E. (1999). Development of commissural con-nections in the hippocampus of reeler mice: evidence of an inhibitory influence of Cajal-Retzius cells. Exp. Neurol. 156: 268-282.

    PubMed  CAS  Google Scholar 

  • Cabrera-Socorro, A., Hernandez-Acosta, N. C., Gonzalez-Gomez, M., and Meyer, G. (2007). Comparative aspects of p73 and reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human. Brain Res. 1132: 59-70.

    PubMed  CAS  Google Scholar 

  • Ceranik, K., Deng, J., Heimrich, B., Lubke, J., Zhao, S., Forster, E., and Frotscher, M. (1999). Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intra-cellular labelling studies. Eur. J. Neurosci. 11: 4278-4290.

    PubMed  CAS  Google Scholar 

  • Chang, Y., Ostling, P., Akerfelt, M., Trouillet, D., Rallu, M., Gitton, Y., El Fatimy, R., Fardeau, V., Le Crom, S., Morange, M., Sistonen, L., and Mezger, V. (2006). Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev. 20: 836-847.

    PubMed  CAS  Google Scholar 

  • Clark, G. D., Mizuguchi, M., Antalffy, B., Barnes, J., and Armstrong, D. (1997). Predominant localization of the LIS family of gene products to Cajal-Retzius cells and ventricular neuroepi-thelium in the developing human cortex. J. Neuropathol. Exp. Neurol. 56: 1044-1052.

    PubMed  CAS  Google Scholar 

  • Coulin, C., Drakew, A., Frotscher, M., and Deller, T. (2001). Stereological estimates of total neuron numbers in the hippocampus of adult reeler mutant mice: Evidence for an increased survival of Cajal-Retzius cells. J. Comp. Neurol. 439: 19-31.

    PubMed  CAS  Google Scholar 

  • D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 719-723.

    PubMed  Google Scholar 

  • de Bergeyck, V., Nakajima, K., Lambert de Rouvroit, C., Naerhuyzen, B., Goffinet, A. M., Miyata, T., Ogawa, M., and Mikoshiba, K. (1997). A truncated reelin protein is produced but not secreted in the ‘Orleans’ reeler mutation (Relnrl-Orl). Brain Res. Mol. Brain Res. 50: 85-90.

    PubMed  Google Scholar 

  • Del Río, J. A., Heimrich, B., Borrell, V., Förster, E., Drakew, A., Alcántara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385: 70-74.

    PubMed  Google Scholar 

  • Derer, P., Derer, M., and Goffinet, A. (2001). Axonal secretion of reelin by Cajal-Retzius cells: evidence from comparison of normal and RelnOrl. mutant mice. J. Comp. Neurol. 440: 136-143.

    PubMed  CAS  Google Scholar 

  • Drakew, A., Frotscher, M., Deller, T., Ogawa, M., and Heimrich, B. (1998). Developmental distri-bution of a reeler gene-related antigen in the rat hippocampal formation visualized by CR-50 immunocytochemistry. Neuroscience 82: 1079-1086.

    PubMed  CAS  Google Scholar 

  • Eriksson, S. H., Thom, M., Heffernan, J., Lin, W. R., Harding, B. N., Squier, M. V., and Sisodiya, S. M. (2001). Persistent reelin-expressing Cajal-Retzius cells in polymicrogyria. Brain 124: 1350-1361.

    PubMed  CAS  Google Scholar 

  • Fairén, A., Morante-Oria, J., and Frassoni, C. (2002). The surface of the developing cerebral cor-tex: still special cells one century later. Prog. Brain Res. 136: 281-291.

    PubMed  Google Scholar 

  • Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., Shier, A., Sheikh, S., and Bailey, K. (1999). Defective corticogenesis and reduction in reelin immunore-activity in cortex and hippocampus of prenatally infected neonatal mice. Mol. Psychiatry 4: 145-154.

    PubMed  CAS  Google Scholar 

  • Fatemi, S. H., Earle, J., and McMenomy, T. (2000). Reduction in reelin immunoreactivity in hip-pocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5: 654-663.

    PubMed  CAS  Google Scholar 

  • Friauf, E., McConnell, S. K., and Shatz, C. J. (1990). Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J. Neurosci. 10: 2601-2613.

    PubMed  CAS  Google Scholar 

  • Frotscher, M., Haas, C. A., and Förster, E. (2003). Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb. Cortex 13: 634-640.

    PubMed  Google Scholar 

  • Garbelli, R., Frassoni, C., Ferrario, A., Tassi, L., Bramerio, M., and Spreafico, R. (2001). Cajal-Retzius cell density as marker of type of focal cortical dysplasia. Neuroreport 12: 2767-2771.

    PubMed  CAS  Google Scholar 

  • García-Moreno, F., Lopez-Mascaraque, L., and De Carlos, J. A. (2007). Origins and migratory routes of murine Cajal-Retzius cells. J. Comp. Neurol. 500: 419-432.

    PubMed  Google Scholar 

  • Goffinet, A. M., Bar, I., Bernier, B., Trujillo, C., Raynaud, A., and Meyer, G. (1999). Reelin expression during embryonic brain development in lacertilian lizards. J. Comp. Neurol. 414: 533-550.

    PubMed  CAS  Google Scholar 

  • Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., Orban, P., Klein, R., Schittny, J. C., and Muller, U. (2001). Beta1-class integrins regulate the develop-ment of laminae and folia in the cerebral and cerebellar cortex. Neuron 31: 367-379.

    PubMed  CAS  Google Scholar 

  • Haas, C. A., Dudeck, O., Kirsch, M., Huszka, C., Kann, G., Pollak, S., Zentner, J., and Frotscher, M. (2002). Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J. Neurosci. 22: 5797-5802.

    PubMed  CAS  Google Scholar 

  • Hanashima, C., Li, S. C., Shen, L., Lai, E., and Fishell, G. (2004). Foxg1 suppresses early cortical cell fate. Science 303: 56-59.

    PubMed  CAS  Google Scholar 

  • Hartmann, D., De Strooper, B., and Saftig, P. (1999). Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol. 9: 719-727.

    PubMed  CAS  Google Scholar 

  • Hevner, R. F., Shi, L., Justice, N., Hsueh, Y., Sheng, M., Smiga, S., Bulfone, A., Goffinet, A. M., Campagnoni, A. T., and Rubenstein, J. L. (2001). Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29: 353-366.

    PubMed  CAS  Google Scholar 

  • Hevner, R. F., Neogi, T., Englund, C., Daza, R. A., and Fink, A. (2003). Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Brain Res. Dev. Brain Res. 141: 39-53.

    CAS  Google Scholar 

  • Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26: 93-96.

    PubMed  CAS  Google Scholar 

  • Janušonis, S., Gluncic, V., and Rakic, P. (2004). Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J. Neurosci. 24: 1652-1659.

    PubMed  Google Scholar 

  • Jiménez, D., Rivera, R., López-Mascaraque, L., and De Carlos, J. A. (2003). Origin of the cortical layer I in rodents. Dev. Neurosci. 25: 105-115.

    PubMed  Google Scholar 

  • Kikkawa, S., Yamamoto, T., Misaki, K., Ikeda, Y., Okado, H., Ogawa, M., Woodhams, P. L., and Terashima, T. (2003). Missplicing resulting from a short deletion in the reelin gene causes reeler-like neuronal disorders in the mutant shaking rat Kawasaki. J. Comp. Neurol. 463: 303-315.

    PubMed  CAS  Google Scholar 

  • Kilb, W., and Luhmann, H. J. (2001). Spontaneous GABAergic postsynaptic currents in Cajal-Retzius cells in neonatal rat cerebral cortex. Eur. J. Neurosci. 13: 1387-1390.

    PubMed  CAS  Google Scholar 

  • Kilb, W., Hartmann, D., Saftig, P., and Luhmann, H. J. (2004). Altered morphological and elec-trophysiological properties of Cajal-Retzius cells in cerebral cortex of embryonic presenilin-1 knockout mice. Eur. J. Neurosci. 20: 2749-2756.

    PubMed  Google Scholar 

  • Kim, A. S., and Pleasure, S. J. (2003). Expression of the BMP antagonist Dan during murine forebrain development. Brain Res. Dev. Brain Res. 145: 159-162.

    CAS  Google Scholar 

  • König, N. (1978). Retzius-Cajal or Cajal-Retzius cells? Neurosci. Lett. 9: 361-363.

    PubMed  Google Scholar 

  • Lacor, P. N., Grayson, D. R., Auta, J., Sugaya, I., Costa, E., and Guidotti, A. (2000). Reelin secre-tion from glutamatergic neurons in culture is independent from neurotransmitter regulation. Proc. Natl. Acad. Sci. USA 97: 3556-3561.

    PubMed  CAS  Google Scholar 

  • Lambert de Rouvroit, C., and Goffinet, A. M. (1998). A new view of early cortical development. Biochem. Pharmacol. 56: 1403-1409.

    Google Scholar 

  • Lambert de Rouvroit, C., Bernier, B., Royaux, I., de Bergeyck, V., and Goffinet, A. M. (1999). Evolutionarily conserved, alternative splicing of reelin during brain development. Exp. Neurol. 156: 229-238.

    Google Scholar 

  • Lavdas, A. A., Grigoriou, M., Pachnis, V., and Parnavelas, J. G. (1999). The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19: 7881-7888.

    PubMed  CAS  Google Scholar 

  • Liu, W. S., Pesold, C., Rodriguez, M. A., Carboni, G., Auta, J., Lacor, P., Larson, J., Condie, B. G., Guidotti, A., and Costa, E. (2001). Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc. Natl. Acad. Sci. USA 98: 3477-3482.

    PubMed  CAS  Google Scholar 

  • Luque, J. M., Morante-Oria, J., and Fairén, A. (2003). Localization of ApoER2, VLDLR and Dab1 in radial glia: groundwork for a new model of reelin action during cortical development. Brain Res. Dev. Brain Res. 140: 195-203.

    PubMed  CAS  Google Scholar 

  • Lyu, Y. L., and Wang, J. C. (2003). Aberrant lamination in the cerebral cortex of mouse embryos lacking DNA topoisomerase IIbeta. Proc. Natl. Acad. Sci. USA 100: 7123-7128.

    PubMed  CAS  Google Scholar 

  • Marín-Padilla, M. (1998). Cajal-Retzius cells and the development of the neocortex. Trends Neurosci. 21: 64-71.

    PubMed  Google Scholar 

  • Martínez-Cerdeño, V., Galazo, M. J., Cavada, C., and Clascá, F. (2002). Reelin immunoreactivity in the adult primate brain: intracellular localization in projecting and local circuit neurons of the cerebral cortex, hippocampus and subcortical regions. Cereb. Cortex 12: 1298-1311.

    PubMed  Google Scholar 

  • Martínez-Galán, J. R., Lopez-Bendito, G., Lujan, R., Shigemoto, R., Fairén, A., and Valdeolmillos, M. (2001). Cajal-Retzius cells in early postnatal mouse cortex selectively express functional metabotropic glutamate receptors. Eur. J. Neurosci. 13: 1147-1154.

    PubMed  Google Scholar 

  • Meyer, G., and Goffinet, A. M. (1998). Prenatal development of reelin-immunoreactive neurons in the human neocortex. J. Comp. Neurol. 397: 29-40.

    PubMed  CAS  Google Scholar 

  • Meyer, G., and Wahle, P. (1999). The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur. J. Neurosci. 11: 3937-3944.

    PubMed  CAS  Google Scholar 

  • Meyer, G., Goffinet, A. M., and Fairén, A. (1999). What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb. Cortex 9: 765-775.

    PubMed  CAS  Google Scholar 

  • Meyer, G., Perez-Garcia, C. G., Abraham, H., and Caput, D. (2002a). Expression of p73 and reelin in the developing human cortex. J. Neurosci. 22: 4973-4986.

    PubMed  CAS  Google Scholar 

  • Meyer, G., Perez-Garcia, C. G., and Gleeson, J. G. (2002b). Selective expression of doublecortin and LIS1 in developing human cortex suggests unique modes of neuronal movement. Cereb. Cortex 12: 1225-1236.

    PubMed  Google Scholar 

  • Meyer, G., ambert de Rouvroit, C., Goffinet, A. M., and Wahle, P. (2003). Disabled-1 mRNA and protein expression in developing human cortex. Eur. J. Neurosci. 17: 517-525.

    PubMed  Google Scholar 

  • Meyer, G., Cabrera Socorro, A., Perez Garcia, C. G., Martinez Millan, L., Walker, N., and Caput, D. (2004). Developmental roles of p73 in Cajal-Retzius cells and cortical patterning. J. Neurosci. 24: 9878-9887.

    PubMed  CAS  Google Scholar 

  • Mienville, J. -M. (1999). Cajal-Retzius cell physiology: just in time to bridge the 20th century. Cereb. Cortex 9: 776-782.

    PubMed  CAS  Google Scholar 

  • Mienville, J. -M., and Pesold, C. (1999). Low resting potential and postnatal upregulation of NMDA receptors may cause Cajal-Retzius cell death. J. Neurosci. 19: 1636-1646.

    PubMed  CAS  Google Scholar 

  • Mienville, J.-M., Maric, I., Maric, D., and Clay, J. R. (1999). Loss of IA expression and increased excitability in postnatal rat Cajal-Retzius cells. J. Neurophysiol. 82: 1303-1310.

    PubMed  CAS  Google Scholar 

  • Miettinen, R., Riedel, A., Kalesnykas, G., Kettunen, H. P., Puolivali, J., Soininen, H., and Arendt, T. (2005). Reelin-immunoreactivity in the hippocampal formation of 9-month-old wildtype mouse: effects of APP/PS1 genotype and ovariectomy. J. Chem. Neuroanat. 30: 105-118.

    PubMed  CAS  Google Scholar 

  • Mooney, S. M., Siegenthaler, J. A., and Miller, M. W. (2004). Ethanol induces heterotopias in organotypic cultures of rat cerebral cortex. Cereb. Cortex 14: 1071-1080.

    PubMed  Google Scholar 

  • Morante-Oria, J., Carleton, A., Ortino, B., Kremer, E. J., Fairén, A., and Lledo, P. M. (2003). Subpallial origin of a population of projecting pioneer neurons during corticogenesis. Proc. Natl. Acad. Sci. USA 100: 12468-12473.

    Google Scholar 

  • Muzio, L., and Mallamaci, A. (2005). Foxg1 confines Cajal-Retzius neuronogenesis and hippoc-ampal morphogenesis to the dorsomedial pallium. J. Neurosci. 25: 4435-4441.

    PubMed  CAS  Google Scholar 

  • Nakajima, K., Mikoshiba, K., Miyata, T., Kudo, C., and Ogawa, M. (1997). Disruption of hippoc-ampal development in vivo by CR-50 mAb against reelin. Proc. Natl. Acad. Sci. USA 94: 8196-8201.

    PubMed  CAS  Google Scholar 

  • Naqui, S. Z., Harris, B. S., Thomaidou, D., and Parnavelas, J. G. (1999). The noradrenergic system influences the fate of Cajal-Retzius cells in the developing cerebral cortex. Brain Res. Dev. Brain Res. 113: 75-82.

    CAS  Google Scholar 

  • Nishikawa, S., Goto, S., Hamasaki, T., Yamada, K., and Ushio, Y. (2002). Involvement of reelin and Cajal-Retzius cells in the developmental formation of vertical columnar structures in the cerebral cortex: evidence from the study of mouse presubicular cortex. Cereb. Cortex 12: 1024-1030.

    PubMed  Google Scholar 

  • Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a cru-cial molecule for laminar organization of cortical neurons. Neuron 14: 899-912.

    PubMed  CAS  Google Scholar 

  • Perez-Garcia, C. G., Tissir, F., Goffinet, A. M., and Meyer, G. (2004). Reelin receptors in develop-ing laminated brain structures of mouse and human. Eur. J. Neurosci. 20: 2827-2832.

    PubMed  CAS  Google Scholar 

  • Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A., and Caruncho, H. J. (1998). Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc. Natl. Acad. Sci. USA 95: 3221-3226.

    PubMed  CAS  Google Scholar 

  • Pollard, K. S., Salama, S. R., Lambert, N., Lambot, M. A., Coppens, S., Pedersen, J. S., Katzman, S., King, B., Onodera, C., Siepel, A., Kern, A. D., Dehay, C., Igel, H., Ares, M., Jr., Vanderhaeghen, P., and Haussler, D. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443: 167-172.

    PubMed  CAS  Google Scholar 

  • Radnikow, G., Feldmeyer, D., and Lübke, J. (2002). Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex. J. Neurosci. 22: 6908-6919.

    PubMed  CAS  Google Scholar 

  • Rakic, S., and Zecevic, N. (2003). Emerging complexity of layer I in human cerebral cortex. Cereb. Cortex 13: 1072-1083.

    PubMed  Google Scholar 

  • Ramón y Cajal, S. (1891). Sur la structure de l’écorce cérébrale de quelques mammifères. Cellule 7: 125-176.

    Google Scholar 

  • Retzius, G. (1893). Die Cajal’schen Zellen der Grosshirnrinde beim Menschen und bei Säugethieren. Biol. Untersuch. Neue Folge 5: 1-15.

    Google Scholar 

  • Riedel, A., Miettinen, R., Stieler, J., Mikkonen, M., Alafuzoff, I., Soininen, H., and Arendt, T. (2003). Reelin-immunoreactive Cajal-Retzius cells: the entorhinal cortex in normal aging and Alzheimer’s disease. Acta Neuropathol. (Berl.) 106: 291-302.

    CAS  Google Scholar 

  • Ringstedt, T., Linnarsson, S., Wagner, J., Lendahl, U., Kokaia, Z., Arenas, E., Ernfors, P., and Ibanez, C.F. (1998). BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 21: 305-315.

    PubMed  CAS  Google Scholar 

  • Roberts, R. C., Xu, L., Roche, J. K., and Kirkpatrick, B. (2005). Ultrastructural localization of reelin in the cortex in post-mortem human brain. J. Comp. Neurol. 482: 294-308.

    PubMed  CAS  Google Scholar 

  • Schiffmann, S. N., Bernier, B., and Goffinet, A. M. (1997). Reelin mRNA expression during mouse brain development. Eur. J. Neurosci. 9: 1055-1071.

    PubMed  CAS  Google Scholar 

  • Shen, Q., Wang, Y., Dimos, J. T., Fasano, C. A., Phoenix, T. N., Lemischka, I. R., Ivanova, N. B., Stifani, S., Morrisey, E. E., and Temple, S. (2006). The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci. 9: 743-751.

    PubMed  CAS  Google Scholar 

  • Shinozaki, K., Miyagi, T., Yoshida, M., Miyata, T., Ogawa, M., Aizawa, S., and Suda, Y. (2002). Absence of Cajal-Retzius cells and subplate neurons associated with defects of tangential cell migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex. Development 129: 3479-3492.

    PubMed  CAS  Google Scholar 

  • Soda, T., Nakashima, R., Watanabe, D., Nakajima, K., Pastan, I., and Nakanishi, S. (2003). Segregation and coactivation of developing neocortical layer 1 neurons. J. Neurosci. 23: 6272-6279.

    PubMed  CAS  Google Scholar 

  • Stoykova, A., Hatano, O., Gruss, P., and Götz, M. (2003). Increase in reelin-positive cells in the marginal zone of Pax6 mutant mouse cortex. Cereb. Cortex 13: 560-571.

    PubMed  CAS  Google Scholar 

  • Studer, M., Filosa, A., and Rubenstein, J. L. (2005). The nuclear receptor COUP-TFI represses differentiation of Cajal-Retzius cells. Brain Res. Bull. 66: 394-401.

    CAS  Google Scholar 

  • Stumm, R. K., Zhou, C., Ara, T., Lazarini, F., Dubois-Dalcq, M., Nagasawa, T., Hollt, V., and Schulz, S. (2003). CXCR4 regulates interneuron migration in the developing neocortex. J. Neurosci. 23: 5123-5130.

    PubMed  CAS  Google Scholar 

  • Supèr, H., Martínez, A., and Soriano, E. (1997). Degeneration of Cajal-Retzius cells in the devel-oping cerebral cortex of the mouse after ablation of meningeal cells by 6-hydroxydopamine. Brain Res. Dev. Brain Res. 98: 15-20.

    Google Scholar 

  • Supèr, H., Del Río, J.A., Martinez, A., Perez-Sust, P., and Soriano, E. (2000). Disruption of neu-ronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10: 602-613.

    PubMed  Google Scholar 

  • Takiguchi-Hayashi, K., Sekiguchi, M., Ashigaki, S., Takamatsu, M., Hasegawa, H., Suzuki-Migishima, R., Yokoyama, M., Nakanishi, S., and Tanabe, Y. (2004). Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J. Neurosci. 24: 2286-2295.

    PubMed  CAS  Google Scholar 

  • Thom, M., Sisodiya, S. M., Beckett, A., Martinian, L., Lin, W. R., Harkness, W., Mitchell, T. N., Craig, J., Duncan, J., and Scaravilli, F. (2002). Cytoarchitectural abnormalities in hippocampal sclerosis. J. Neuropathol. Exp. Neurol. 61: 510-519.

    PubMed  Google Scholar 

  • Tissir, F., Lambert de Rouvroit, C., Sire, J. Y., Meyer, G., and Goffinet, A. M. (2003). Reelin expression during embryonic brain development in Crocodylus niloticus. J. Comp. Neurol. 457: 250-262.

    PubMed  CAS  Google Scholar 

  • Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277: 39944-39952.

    PubMed  CAS  Google Scholar 

  • Yamazaki, H., Sekiguchi, M., Takamatsu, M., Tanabe, Y., and Nakanishi, S. (2004). Distinct ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes dur-ing neocorticogenesis. Proc. Natl. Acad. Sci. USA 101: 14509-14514.

    PubMed  CAS  Google Scholar 

  • Yoshida, M., Assimacopoulos, S., Jones, K. R., and Grove, E. A. (2006). Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133: 537-545.

    PubMed  CAS  Google Scholar 

  • Zecevic, N., and Rakic, P. (2001). Development of layer I neurons in the primate cerebral cortex. J. Neurosci. 21: 5607-5619.

    PubMed  CAS  Google Scholar 

  • Zecevic, N., Milosevic, A., Rakic, S., and Marín-Padilla, M. (1999). Early development and com-position of the human primordial plexiform layer: an immunohistochemical study. J. Comp. Neurol. 412: 241-254.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Mienville, JM. (2008). Reelin and Cajal-Retzius Cells. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_18

Download citation

Publish with us

Policies and ethics