Skip to main content

The Hedgehog, TGF-β/BMP and Wnt Families of Morphogens in Axon Guidance

  • Chapter
Axon Growth and Guidance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 621))

Abstract

During embryonic development, morphogens act as graded positional cues to dictate cell fate specification and tissue patterning. Recent findings indicate that morphogen gradients also serve to guide axonal pathfinding during development of the nervous system. These findings challenge our previous notions about morphogens and axon guidance molecules and suggest that these proteins, rather than having sharply divergent functions, act more globally to provide graded positional information that can be interpreted by responding cells either to specify cell fate or to direct axonal pathfinding. This chapter presents the roles identified for members of three prominent morphogen families—the Hedgehog, Wnt and TGF-β/BMP families—in axon guidance, and discusses potential implications for the molecular mechanisms underlying their guidance functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dickson BJ. Molecular mechanisms of axon guidance. Science 2002; 298(5600):1959–1964.

    Article  PubMed  CAS  Google Scholar 

  2. Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996; 274(5290):1123–1133.

    Article  PubMed  CAS  Google Scholar 

  3. Teleman AA, Strigini M, Cohen SM. Shaping morphogen gradients. Cell 2001; 105(5):559–562.

    Article  PubMed  CAS  Google Scholar 

  4. Gurdon JB, Dyson S, St Johnston D. Cells’ perception of position in a concentration gradient. Cell 1998; 95(2):159–162.

    Article  PubMed  CAS  Google Scholar 

  5. Chen Y, Schier AF. The zebrafish Nodal signal Squint functions as a morphogen. Nature 2001; 411(6837):607–610.

    Article  PubMed  CAS  Google Scholar 

  6. Briscoe J, Chen Y, Jessell TM et al. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol Cell 2001; 7(6):1279–1291.

    Article  PubMed  CAS  Google Scholar 

  7. Jessell TM. Neuronal specification in the spinal cord: Inductive signals and transcriptional codes. Nat Rev Genet 2000; 1(1):20–29.

    Article  PubMed  CAS  Google Scholar 

  8. Ingham PW, McMahon AP. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev 2001; 15(23):3059–3087.

    Article  PubMed  CAS  Google Scholar 

  9. Marti E, Bovolenta P. Sonic hedgehog in CNS development: One signal, multiple outputs. Trends Neurosci 2002; 25(2):89–96.

    Article  PubMed  CAS  Google Scholar 

  10. Roelink H, Porter JA, Chiang C et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 1995; 81(3):445–455.

    Article  PubMed  CAS  Google Scholar 

  11. Lum L, Beachy PA. The Hedgehog response network: Sensors, switches, and routers. Science 2004; 304(5678):1755–1759.

    Article  PubMed  CAS  Google Scholar 

  12. Lee KJ, Jessell TM. The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 1999; 22:261–294.

    Article  PubMed  CAS  Google Scholar 

  13. Lee KJ, Mendelsohn M, Jessell TM. Neuronal patterning by BMPs: A requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 1998; 12(21):3394–3407.

    Article  PubMed  CAS  Google Scholar 

  14. Muroyama Y, Fujihara M, Ikeya M et al. Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord.Genes Dev 2002; 16 (5):548–553.

    Article  PubMed  CAS  Google Scholar 

  15. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004. 303(5663):1483–1487.

    Article  PubMed  CAS  Google Scholar 

  16. Strutt D. Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development 2003; 130(19):4501–4513.

    Article  PubMed  CAS  Google Scholar 

  17. Colamarino SA, Tessier-Lavigne M. The role of the floor plate in axon guidance. Annu Rev Neurosci 1995; 18:497–529.

    Article  PubMed  CAS  Google Scholar 

  18. Kennedy TE, Serafini T, de la Torre JR et al. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 1994; 78(3):425–435.

    Article  PubMed  CAS  Google Scholar 

  19. Placzek M, Tessier-Lavigne M, Jessell T et al. Orientation of commissural axons in vitro in response to a floor plate-derived chemoattractant. Development 1990; 110(1):19–30.

    PubMed  CAS  Google Scholar 

  20. Serafini T, Colamarino SA, Leonardo ED et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 1996; 87(6):1001–1014.

    Article  PubMed  CAS  Google Scholar 

  21. Serafini T, Kennedy TE, Galko MJ et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 1994; 78(3):409–424.

    Article  PubMed  CAS  Google Scholar 

  22. Tessier-Lavigne M, Placzek M, Lumsden AG et al. Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 1988; 336(6201):775–778.

    Article  PubMed  CAS  Google Scholar 

  23. Fazeli A, Dickinson SL, Hermiston ML et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 1997; 386(6627):796–804.

    Article  PubMed  CAS  Google Scholar 

  24. Charron F, Stein E, Jeong J et al. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 2003; 113(1):11–23.

    Article  PubMed  CAS  Google Scholar 

  25. Bourikas D, Pekarik V, Baeriswyl T et al. Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat Neurosci 2005.

    Google Scholar 

  26. Torres M, Gomez-Pardo E, Gruss P. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 1996; 122(11):3381–3391.

    PubMed  CAS  Google Scholar 

  27. Trousse F, Marti E, Gruss P et al. Control of retinal ganglion cell axon growth: A new role for Sonic hedgehog. Development 2001; 128(20):3927–3936.

    PubMed  CAS  Google Scholar 

  28. Song HJ, Ming GL, Poo MM. cAMP-induced switching in turning direction of nerve growth cones. Nature 1997; 388(6630):275–279.

    PubMed  CAS  Google Scholar 

  29. Song H, Ming G, He Z et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 1998; 281(5382):1515–1518.

    Article  PubMed  CAS  Google Scholar 

  30. Song HJ, Poo MM. Signal transduction underlying growth cone guidance by diffusible factors. Curr Opin Neurobiol 1999; 9(3):355–363.

    Article  PubMed  CAS  Google Scholar 

  31. Hopker VH, Shewan D, Tessier-Lavigne M et al. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 1999; 401(6748):69–73.

    Article  PubMed  CAS  Google Scholar 

  32. Augsburger A, Schuchardt A, Hoskins S et al. BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 1999; 24(1):127–141.

    Article  PubMed  CAS  Google Scholar 

  33. Butler SJ, Dodd J. A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 2003; 38(3):389–401.

    Article  PubMed  CAS  Google Scholar 

  34. Lee YS, Chuong CM. Activation of protein kinase A is a pivotal step involved in both BMP-2-and cyclic AMP-induced chondrogenesis. J Cell Physiol 1997; 170(2):153–165.

    Article  PubMed  CAS  Google Scholar 

  35. Foletta VC, Lim MA, Soosairajah J et al. Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J Cell Biol 2003; 162(6):1089–1098.

    Article  PubMed  CAS  Google Scholar 

  36. Halstead J, Kemp K, Ignotz RA. Evidence for involvement of phosphatidylcholine-phospholipase C and protein kinase C in transforming growth factor-beta signaling. J Biol Chem 1995; 270(23):13600–13603.

    Article  PubMed  CAS  Google Scholar 

  37. Choi SE, Choi EY, Kim PH et al. Involvement of protein kinase C and rho GTPase in the nuclear signalling pathway by transforming growth factor-betal in rat-2 fibroblast cells. Cell Signal 1999; 11(1):71–76.

    Article  PubMed  CAS  Google Scholar 

  38. Colavita A, Culotti JG. Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon giidance in Caenorhabditis elegans Dev Biol 1998: 194(1):72–85.

    Article  PubMed  CAS  Google Scholar 

  39. Colavita A, Krishna S, Zheng H et al. Pioneer axon guidance by UNC-129, a C. elegans TGF-beta. Science 1998; 281(5377):706–709.

    Article  PubMed  CAS  Google Scholar 

  40. Hedgecock EM, Culotti JG, Hall DH. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 1990; 4(1):61–85.

    Article  PubMed  CAS  Google Scholar 

  41. Nash B, Colavita A, Zheng H et al. The forkhead transcription factor UNC-130 is required for the graded spatial expression of the UNC-129 TGF-beta guidance factor in C. elegans. Genes Dev 2000; 14(19):2486–2500.

    Article  PubMed  CAS  Google Scholar 

  42. Hall AC, Lucas FR, Salinas PC. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 2000; 100(5):525–535.

    Article  PubMed  CAS  Google Scholar 

  43. Callahan CA, Muralidhar MG, Lundgren SE et al. Control of neuronal pathway selection by a Drosophila receptor protein-tyrosine kinase family member. Nature 1995; 376(6536):171–174.

    Article  PubMed  CAS  Google Scholar 

  44. Bonkowsky JL, Yoshikawa S, O’Keefe DD et al. Axon routing across the midline controlled by the Drosophila Derailed receptor. Nature 1999; 402(6761):540–544.

    Article  PubMed  CAS  Google Scholar 

  45. Yoshikawa S, McKinnon RD, Kokel M et al. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 2003; 422(6932):583–588.

    Article  PubMed  CAS  Google Scholar 

  46. Patthy L. The WIF module. Trends Biochem Sci 2000; 25(1):12–13.

    Article  PubMed  CAS  Google Scholar 

  47. Lyuksyutova AI, Lu CC, Milanesio N et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 2003; 302(5652):1984–1988.

    Article  PubMed  CAS  Google Scholar 

  48. Wang Y, Thekdi N, Smallwood PM et al. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J Neurosci 2002; 22(19):8563–8573.

    PubMed  CAS  Google Scholar 

  49. He X, Semenov M, Tamai K et al. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development 2004; 131(8):1663–1677.

    Article  PubMed  CAS  Google Scholar 

  50. Liu Y, Shi J, Lu CC et al. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci 2005; 8(9):1151–1159.

    Article  PubMed  CAS  Google Scholar 

  51. Cheng HJ, Nakamoto M, Bergemann AD et al. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map, Cell 1995; 82(3):371–381.

    Article  PubMed  CAS  Google Scholar 

  52. Drescher U, Kremoser C, Handwerker C et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 1995; 82(3):359–370.

    Article  PubMed  CAS  Google Scholar 

  53. Hindges R, McLaughlin T, Genoud N et al. EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron 2002; 35(3):475–487.

    Article  PubMed  CAS  Google Scholar 

  54. Mann F, Ray S, Harris W et al. Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 2002; 35(3):461–473.

    Article  PubMed  CAS  Google Scholar 

  55. Schmitt AM, Shi J, Wolf AM et al. Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature 2006; 439(7072):31–37.

    PubMed  CAS  Google Scholar 

  56. Kuhl M, Sheldahl LC, Park M et al. The Wnt/Ca2+ pathway: A new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000; 16(7):279–283.

    Article  PubMed  CAS  Google Scholar 

  57. Lu X, Borchers AG, Jolicoeur C et al. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 2004; 430(6995):93–98.

    Article  PubMed  CAS  Google Scholar 

  58. Winberg ML, Tamagnone L, Bai J et al. The transmembrane protein Off-track associates with Plexins and functions downstream of Semaphorin signaling during axon guidance. Neuron 2001; 32(1):53–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Charron, F., Tessier-Lavigne, M. (2007). The Hedgehog, TGF-β/BMP and Wnt Families of Morphogens in Axon Guidance. In: Bagnard, D. (eds) Axon Growth and Guidance. Advances in Experimental Medicine and Biology, vol 621. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76715-4_9

Download citation

Publish with us

Policies and ethics